Литиевые аккумулятор (Li-Io, Li-Po) являются самыми популярными на данный момент перезаряжаемыми источниками электрической энергии. Литиевый аккумулятор имеет номинальное напряжение 3.7 Вольт, именно оно указывается на корпусе. Однако, заряженный на 100% аккумулятор имеет напряжение 4.2 В, а разряженный “в ноль” – 2.5 В, вообще нет смысла разряжать аккумулятор ниже 3 В, во-первых, он от этого портится, во-вторых, в промежутке от 3 до 2.5 В аккумулятор отдаёт всего пару процентов энергии. Таким образом, рабочий диапазон напряжений принимаем 3 – 4.2 Вольта. Мою подборку советов по эксплуатации и хранению литиевых аккумуляторов вы можете посмотреть вот в этом видео

Есть два варианта соединения аккумуляторов, последовательное и параллельное.

При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.

В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.

Особенности зарядки аккумуляторов китайскими модулями

Стандартный покупной зарядно-защитный модуль за 20 рублей для литиевого аккумулятора (ссылка на Aliexpress )
(позиционируется продавцом как модуль для одной банки 18650) может и будет заряжать любой литиевый аккумулятор вне зависимости от формы, размера и емкости до правильного напряжения 4,2 вольта (напряжение полностью заряженного аккумулятора, под завязку). Даже если это огромный литиевый пакет на 8000mah (разумеется речь идет про одну ячейку на 3,6-3,7v). Модуль дает зарядный ток 1 ампер , это значит что им можно без опаски заряжать любой аккумулятор емкостью от 2000mah и выше (2Ah, значит зарядный ток – половина емкости, 1А) и соответственно время зарядки в часах будет равно емкости аккумулятора в амперах (на самом деле чуть больше, полтора-два часа на каждые 1000mah). Кстати аккумулятор можно подключать к нагрузке уже во время заряда.

Важно! Если вы хотите заряжать аккумулятор меньшей емкости (например одну старую банку на 900mah или крошечный литиевый пакетик на 230mah), то зарядный ток 1А это много, его следует уменьшить. Это делается заменой резистора R3 на модуле согласно приложенной таблице. Резистор необязательно smd, подойдет самый обычный. Напоминаю, что зарядный ток должен составлять половину от емкости аккумулятора (или меньше, не страшно).

Но если продавец говорит, что этот модуль для одной банки 18650, можно ли им заряжать две банки? Или три? Что если нужно собрать емкий пауэрбанк из нескольких аккумуляторов?
МОЖНО! Все литиевые аккумуляторы можно подключать параллельно (все плюсы к плюсам, все минусы к минусам) ВНЕ ЗАВИСИМОСТИ ОТ ЕМКОСТИ. Спаянные параллельно аккумуляторы сохраняют рабочее напряжение 4,2v а их емкость складывается. Даже если вы берете одну банку на 3400mah а вторую на 900 – получится 4300. Аккумуляторы будут работать как одно целое и разряжаться будут пропорциональной своей емкости.
Напряжение в ПАРАЛЛЕЛЬНОЙ сборке ВСЕГДА ОДИНАКОВО НА ВСЕХ АККУМУЛЯТОРАХ! И ни один аккумулятор физически не может разрядиться в сборке раньше других, здесь работает принцип сообщающихся сосудов. Те, кто утверждают обратное и говорят что аккумуляторы с меньшей емкостью разрядятся быстрее и умрут – путают с ПОСЛЕДОВАТЕЛЬНОЙ сборкой, плюйте им в лицо.
Важно! Перед подключением друг к другу все аккумуляторы должны иметь примерно одинаковое напряжение, чтобы в момент спаивания между ними не потекли уравнительные токи, они могут быть очень большими. Поэтому лучше всего перед сборкой просто зарядить каждый аккумулятор по отдельности. Разумеется время зарядки всей сборки будет увеличиваться, раз вы используете все тот же модуль на 1А. Но можно спараллелить два модуля, получив зарядный ток до 2А (если ваше зарядное устройство может столько дать). Для этого нужно соединить перемычками все аналогичные клеммы модулей (кроме Out- и B+, они продублированы на платах другими пятаками, уже и так окажутся соединенными). Либо можно купить модуль (ссылка на Aliexpress ), на котором микросхемы уже стоят в параллель. Этот модуль способен заряжать током в 3 Ампера.

Простите за совсем очевидные вещи, но люди по-прежнему путают, поэтому придется обсудить разницу между параллельным и последовательным соединением.
ПАРАЛЛЕЛЬНОЕ соединение (все плюсы к плюсам, все минусы к минусам) сохраняет напряжение аккумулятора 4,2 вольта, но увеличивает емкость, складывая все емкости вместе. Во всех пауэрбанках применяется параллельное соединение нескольких аккумуляторов. Такая сборка по-прежнему может заряжаться от USB и повышающим преобразователем напряжение поднимается до выходных 5v.
ПОСЛЕДОВАТЕЛЬНОЕ соединение (каждый плюс к минусу последующего аккумулятора) дает кратное увеличение напряжения одной заряженной банки 4,2в (2s – 8,4в, 3s – 12,6в и так далее), но емкость остается прежняя. Если используются три аккумулятора на 2000mah, то емкость сборки – 2000mah.
Важно! Считается что для последовательной сборки священно обязательно нужно использовать только аккумуляторы одинаковой емкости. На самом деле это не так. Можно использовать разные, но тогда емкость батареи будет определяться НАИМЕНЬШЕЙ емкостью в сборке. Складываете 3000+3000+800 – получаете сборку на 800mah. Тогда спецы начинают кукарекать, что тогда менее емкий аккумулятор будет быстрее разряжаться и умрет. А это неважно! Главное и действительно священное правило – для последовательной сборки всегда и обязательно нужно использовать плату защиты BMS на нужное количество банок. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. В случае с банкой на 800 она и разрядится, БМС отключит нагрузку от батареи, разряд остановится и остаточный заряд по 2200mah на остальных банках уже не будет иметь значения – нужно заряжаться.

Плата BMS в отличии от одинарного зарядного модуля НЕ ЯВЛЯЕТСЯ ЗАРЯДНЫМ УСТРОЙСТВОМ последовательной сборки. Для зарядки нужен настроенный источник нужного напряжения и тока . Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.

Можно ли заряжать последовательную сборку, соединив несколько одинарных зарядных модулей?
На самом деле при некоторых допущениях – можно. Для каких-то самоделок зарекомендовала себя схема с использованием одинарных модулей, соединенных также последовательно, но для КАЖДОГО модуля нужен СВОЙ ОТДЕЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ. Если заряжаете 3s – берёте три телефонных зарядки и подключаете каждую к одному модулю. При использовании одного источника – короткое замыкание по питанию , ничего не работает. Такая система также работает и как защита сборки (но модли способны отдавать не более 3 ампер) Либо же просто заряжайте сборку побаночно, подключая модуль к каждому аккумулятору до полного заряда.

Индикатор заряженности аккумулятора

Тоже насущная проблема – хотя бы примерно знать сколько процентов заряда остается на аккумуляторе, чтобы он не разрядился в самый ответственны момент.
Для параллельных сборок на 4,2 вольта самым очевидным решением будет сразу приобрести готовую плату пауэрбанка, на которой уже есть дисплей отображающий проценты заряда. Эти проценты не супер-точные, но всё же помогают. Цена вопроса примерно 150-200руб, все представлены на сайте Гайвера. Даже если вы собираете не пауэрбанк а что-то другое, плата эта довольно дешевая и небольшая, чтобы разместить ее в самоделке. Плюс она уже имеет функцию заряда и защиты аккумуляторов.
Есть готовые миниатюрные индикаторы на одну или несколько банок, 90-100р
Ну а самым дешевым и народным методом является использование повышающего преобразователя МТ3608 (30 руб.), настроенного на 5-5,1v. Собственно если вы делаете пауэрбанк на любом преобразователе на 5 вольт, то даже не нужно ничего докупать. Доработка заключается в установке красного или зеленого светодиода (другие цвета будут работать на другом выходном напряжении, от 6в и выше) через токоограничивающий резистор 200-500ом между выходной плюсовой клеммой (это будет плюс) и входной плюсовой (для светодиода это получится минус). Вы не ошиблись, между двумя плюсами! Дело в том, что при работе преобразователя между плюсами создается разница напряжения, +4,2 и +5в дают между собой напряжение 0,8в. При разряде аккумулятора его напряжение будет падать, а выходное с преобразователя всегда стабильно, значит разница будет увеличиваться. И при напряжении на банке 3,2-3,4в разница достигнет необходимой величины, чтобы зажечь светодиод – он начинает показывать, что пора заряжаться.

Чем измерять емкость аккумуляторов?

Мы уже привыкли в мнению, что для замера нужен Аймакс b6, а он стоит денег и для большинства радиолюбителей избыточен. Но есть способ замерить емкость 1-2-3баночного аккумулятора с достаточной точностью и дешево – простой USB-тестер.

Подробное описание литий-ионных батарей 18650, изготовление аппарата для зарядки своими руками, нюансы применения.

ТЕСТ:

Чтобы понять, обладаете ли вы достаточной информацией о литий-ионном аккумуляторе:
  1. В чем заключался главный недостаток первых моделей батарей 18650?

а) Они взрывались из-за металлического лития внутри – при частых зарядках на элементе появлялись накопления, приводящие к взрыву.

б) Батарея была слишком громоздкая и неудобная.

  1. От какой проблемы пока не избавились производители современных моделей 18650?

а) Батарея часто перегревается.
б) Аккумулятор быстро теряет заряд при попадании в отрицательные температуры.

  1. В каком температурном диапазоне желательно хранить батарею?

а) + 10 — + 25 – идеальные показатели. Аккумулятор не переносит слишком холодных или жарких помещений.

б) Храните аккумулятор при низких температурах, когда он не используется.

в) При температуре +30-45 градусов.

  1. Почему нельзя приобретать зарядное устройство, изготовленное в Китае?

а) Корпус слишком ненадежный.
б) Детали низкого качества, верная технология сборки не всегда соблюдена.

  1. При каком уровне заряда желательно хранить батарею?

а) Хранение 18650 следует осуществлять на уровне заряда, не падающего ниже 50%. Полную разрядку производить нельзя.

б) Не ниже 10%.

Ответы:

  1. а) Главный недостаток первых моделей – взрывоопасность. Металлический литий обрастал наростами при частых зарядках и происходило замыкание, приводящее к взрыву батареи.
  2. б) Современные батареи плохо переносят низкие температуры – заряд падает очень быстро.
  3. а) + 10 — + 25 – идеальные показатели. Нельзя помещать батарею в иные условия.
  4. б) Китайские производители часто использует некачественные детали при сборке аппаратов, поэтому они выходят из строя. Еще не всегда соблюдается правильная технология сборки.
  5. а) Если батарею планируете долго держать без работы, то проследите, чтобы заряд на ней не падал ниже 50%, иначе аккумулятор испортится.
Литий-ионная батарея

Владельцы литий-ионных аккумуляторов 18650 сталкиваются с вопросом о том, каким током его заряжать. Также возникают трудности правильностью эксплуатации, люди точно не знают, чего боятся подобные батареи, как увеличить продолжительность их работы.

Чтобы самостоятельно собрать электронную сигарету или фонарик, то обязательно нужно изучить все аспекты работы с литий-ионным источником питания.

Определение : Литий-ионный аккумулятор — это батарея электрического тока, получившее большое распространение среди бытовой электронной техники с 1991 года. Именно в этом году корпорация Sony презентовала продукт на широком рынке.

Ответы на 5 часто задаваемых вопросов

  1. Для чего используются литий-ионные батареи?

— В качестве источника питания. Подобные батареи часто применяют для различных мобильных телефонов, видеокамер, ноутбуков, для подзарядки электромобилей или современных электронных сигарет.

  1. У моделей есть недостатки?

— Основной недостаток модели заключался в том, что первые разработки буквально взрывались. Это объясняется тем, что производители поместили внутрь анод, состоящий из металлического лития. Когда происходит большое количество зарядов и разрядов, то на аноде появляются образования, приводящие к замыканию электродов. В результате происходит возгорание, а после и взрыв. На данный момент эта проблема решена.

  1. Как решилась проблема со взрывами?

— Чтобы обезопасить конструкцию, ученые заменили сердцевину на графит, и от проблемы со взрывами избавились. Но остались трудности с катодом, вызванные из-за конструкции из оксида кобальта. Если нарушались эксплуатационные характеристики, то взрывы повторялись. Именно поэтому нужно было следить, чтобы устройство не подвергалось перезарядке. Пользователям было крайне неудобно постоянно следить за уровнем зарядки и разработчикам пришлось вновь модифицировать устройство. Современные модели безопасны. Когда разработчики начали использовать литий-ферро-фосфатные батареи, то и от этой проблемы удалось избавиться. Современное устройство выпускают таким образом, чтобы перезаряд и перегрев был невозможен.

  1. Современные модели имеют недостатки?

— Заряд теряется, если батарея попадает под воздействия низких температур.

  1. Если долго не использовать батарею, то она испортится?

– Если не опускать уровень разреженности ниже 50%, то не испортится.

3 преимущества батареи

Литий-ионные аккумуляторы имеют ряд положительных моментов из-за чего и приобрели популярность:

  1. Очень большая емкость аккумулятора.
  2. Маленький саморазряд.
  3. Нет необходимости в специальном обслуживании.

Зарядка – 5 нюансов


Зарядка

Посмотрите на картинке оригинальное зарядное устройство. Зарядное устройство, предназначающееся для литий-ионных аккумуляторов, очень похоже на свинцово-кислотный тип батареи. Разница заключается в том, что у литий-ионного аккумулятора имеется высокие напряжения на каждой банке и серьезные требования допусков по напряжению.

Это интересно! Аккумулятор называют «банкой» из-за схожести с алюминиевыми банками, в которых выпускают прохладительные напитки.


«Банки»

Самые популярные элементы питания с этой формой — 18650. Это название аккумулятор получил из-за размеров: диаметр — 18 мм, высота — 65 мм. Когда идёт зарядка свинцово-кислотных аккумуляторов, допускаются небольшие неточности в указаниях напряжений. Но с литий-ионными устройствами всё намного конкретнее. Когда происходит зарядка, и напряжение увеличивается до 4,2 Вольт, напряжение на элемент нужно сразу же прекратить. Погрешность составляет всего 0,5 Вольт.


Китайская зарядка

На рынке встречается большое количество китайских зарядок, рассчитанных на элементы питания разных материалов. Без ущерба работоспособности ионные батареи заряжают током в 0,8 А. Но напряжение в банке придется предельно четко контролировать. Когда величина составит 4,2 Вольт, сразу же прекращаем зарядку. Но в том случае, если в банку встраивается контроллер, тогда не стоит беспокоиться об этом, поскольку аппарат всё сделает самостоятельно.

Зарядки 4,2 Вольт

В качестве зарядника для литий-ионной батареи используют стабилизатор напряжения, ограниченный ток в самом начале зарядки. Использовать необходимо исключительно стабильное напряжение, и ограничение тока в самом начале процесса зарядки. Зарядку следует заканчивать в тот момент, когда стабильное напряжение равняется 4,2 Вольт, отсутствует ток, или его величина очень маленькая — в районе 5-7 мА.


Окисление

Когда в аккумулятор помещают стержень из графита, то напряжение не должно превышать 4,1 В на один элемент. При пренебрежением этим правилом, энергетическая плотность сильно возрастет, начнутся процессы окисления устройства. В итоге аккумулятор выйдет из строя. Чтобы избежать окисления, современные модели оснащаются добавками — графита в чистом виде внутри нет. Но подобные модели все еще можно найти случайно.

Как правильно заряжать Li-ion аккумуляторы. Параллельное соединение аккумуляторов.

Самодельное зарядное устройство в домашних условиях (своими руками) – 1 схема

Для зарядки 18650 приобретают универсальную зарядку, и используют постоянно мультиметр, чтобы выяснять нужные параметры. Но такое приспособление стоит довольно дорого. Минимальная цена – 2700 рублей.

Вместо этого можно потратить всего несколько часов и собрать зарядное устройство самостоятельно. Плюсами такой сборки является дешевизна, надежность, автоматическое отключение аккумулятора. Все детали, используемые для сборки, найдутся в гараже у любого радиолюбителя. Если чего-то не хватает, это можно купить в ближайшем радиомагазине. Потратить на компоненты придётся максимум 300 рублей.

Если схему правильно собрать, то нет никакой необходимости дополнительной настройки — она сразу будет готова к эксплуатации.

Использовать нужно следующую электрическую схему:

Схема

Положительным моментом является то, что если установить стабилизатор на нужный радиатор, тогда аккумулятор заряжают, не опасаясь, что зарядка загорится. А это точно нельзя сказать о китайских зарядках, которые грешат этим неприятным последствием.

Принцип работы – 4 нюанса

  • для начала аккумулятор необходимо зарядить при помощи постоянного тока, который определяется сопротивлением резистора R4;
  • после того, как аккумулятор получит напряжение в 4,2 Вольт, аппарат переходит на зарядку постоянного тока;
  • когда ток понизится до минимальных значений, светодиод перестанет гореть;
  • ток, подзаряжающий литий-ионный аккумулятор, не должен превышать 10% емкости всего аккумулятора. Таким образом, увеличивается срок эксплуатации элементов питания. Если резистор R4 имеет номинал в 11 Ом, то ток цепи должен равняться 100 мА. Если сопротивление равно 5 Ом, тогда ток зарядки должен составлять 230 мА.

Еще важно знать 3 нюанса о «продлении жизни» 18650

  1. Если аккумулятор нужно будет оставить на какое-то время без работы, то элементы питания желательно хранить в отдельности от устройства, которое они будут питать. Если элемент полностью заряжен, то со временем он утратит какую-то часть своего заряда. В том случае, когда элемент заряжается очень мало, или полностью разряжен, то работоспособность может совсем исчезнуть. Особенно это заметно в период длительной спячки.
  2. Хранение 18650 следует осуществлять на уровне заряда, не падающего ниже 50%. Полной зарядки и перезарядки элемента ни в коем случае нельзя допускать. Эффект памяти у этого оборудования отсутствует. Зарядку нужно производить до того момента, как заряд полностью иссякнет. Таким образом, работоспособность аккумулятора продлится.
  3. Аккумулятор запрещено оставлять в слишком холодных или жарких помещениях. Подходящей температурой для хранения является + 10 — + 25 градусов по Цельсию. Если поместить элемент питания на холод, то не только уменьшится время работы, но и испортится химическая система. Все наверняка замечали, что при эксплуатации мобильного телефона зимой заряд батареи резко падает.

Как избежать 4 ошибок при использовании и зарядке литий-ионного АКБ

  1. В том случае, если вы решили подзаряжать литий-ионный аккумулятор при помощи магазинной зарядки, придется проследить, чтобы она не была произведена в Китае. Обычно подобные устройства собираются из самых дешевых материалов, и нужная технология в них соблюдена не всегда. В результате это может привести к очень печальным последствиям: возгорание и взрыв.
  2. Если есть желание самостоятельно собрать устройство, то использовать для зарядки аккумулятора нужно ток, который составляет 10% от емкости аккумулятора. Процент может быть и выше, но не превышать 20%.
  3. Используя ионные элементы питания, не нарушайте правила хранения и эксплуатации, в противном случае возможен перегрев, возгорание и взрыв.
  4. Если соблюдать все правила эксплуатации, а также верные условия хранения, то срок службы батареи получится продлить.

Топ 3 лучших зарядных устройств для аккумулятора 18650

Для качественной зарядки батареи следует приобретать хорошие устройства, что уже полюбились многим пользователям.

  1. Nitecore Digicharger D4 – подходит для зарядки сразу нескольких батарей. Максимально проста в использовании.
  2. Nitecore i2 – один из лучших вариантов современных устройств. Понятное и простое в применении.
  3. Basen B21 – универсальное устройство для разных видов батарей.


В предыдущей статье я рассматривал вопрос о замене никель-кадмиевых (никель-марганцевых) NiСd(NiMn) аккумуляторов шуруповерта на литиевые. Надо рассмотреть несколько правил по зарядке аккумуляторов.

Литий ионные аккумуляторы размера 18650 в основном могут заряжаться до напряжения 4,20В на ячейку с допустимым отклонением не больше 50 мВ потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может составлять 0,1хС до 1хС (здесь С-емкость). Лучше выбрать эти значение по даташиту. Я применил в переделке шуруповерта аккумуляторы марки . Смотрим даташит-ток зарядки -1,5А.


Наиболее правильным будет провести заряд литиевых аккумуляторов в два приема по методике CCCV (ток постоянный, постоянное напряжение).

Первый этап- должен обеспечить постоянный ток заряда. Величина тока равна 0.2-0.5С. Я применил аккумулятор емкостью 3000 мА/ч, значит номинальный ток заряда будет 600-1500мА. После зарядка банки идет на неизменном напряжении, ток постоянно уменьшается.

Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25В. Аккумулятор зарядился если ток уменьшится до 0.05-0.01С. Принимая во внимание вышесказанное используем электронные платы с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на так, как она более удобна в настройках.




Характеристики XL4015E1.
Максимальный выходной ток до 5 А.
Напряжение на выходе: 0.8 В-30 В.
Напряжение на входе 5 В-32 В.
имеет аналогичные параметры, только ток до 3 А.

Перечень инструментов и материалов.

Адаптер 220\12 В, 3 А -1шт;
-штатное зарядное устройство шуруповерта (или источник питания);
-плата заряда CC/CV на или на -1шт;
-соединительные провода -паяльник;
-тестер;
-пластмассовая коробка для плата заряда -1шт;
-минивольтметр -1шт;
-переменный резистор (потенциометр) на 10-20 кОм -1шт;
-разъем питания для аккумуляторного отсека шуруповерта -1шт.

Шаг первый . Сборка ЗУ аккумуляторов шуруповерта на адаптере.

Плату cccv мы уже выбрали выше. В качестве источника питания можно применить любой с такими параметрами-выходное напряжение не ниже 18 В (для схемы 4S),ток 3 А. В первом примере изготовления зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 12 В, 3 А.

Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без перегруза 1,9 А. Также измерил температуру на радиаторе транзистора-40°C. Вполне нормальный режим.

Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.



На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 В (небольшой запас от 16,8 В для падения на плате CC/CV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.

Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 В. Другим подстроечным резистором выставляем ток 1,5 А, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43°C, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.

Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

Шаг второй . Сборка схемы зарядного устройства аккумуляторов шуруповерта на штатном зарядном.

У меня было штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-марганцевых аккумуляторов. Задача стояла в том чтобы заряжать и никель-марганцевые аккумуляторы и литий-ионные.



Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CC/CV.
Напряжение холостого хода на выходе штатное зарядного было 27 В, это вполне подходит для нашей зарядной платы. Далее все то же как и варианте с адаптером.

В современных мобильных электронных устройствах, даже тех, которые спроектированы с учетом минимизации энергопотребления, использование невосстанавливаемых батарей уходит в прошлое. И с экономической точки зрения — уже на непродолжительном интервале времени суммарная стоимость необходимого количества разовых батарей быстро превысит стоимость одного аккумулятора, и с точки зрения удобства пользователя — проще перезарядить аккумулятор, чем искать, где купить новую батарейку. Соответственно, зарядные устройства для аккумуляторов становятся товаром с гарантированным спросом. Неудивительно, что практически все производители интегральных схем для устройств электропитания уделяют внимание и «зарядному» направлению.

Еще лет пять назад обсуждение микросхем для заряда аккумуляторных батарей (Battery Chargers IC) начиналось со сравнения основных типов аккумуляторов — никелевых и литиевых. Но в настоящее время никелевые аккумуляторы практически перестали использоваться и большинство производителей микросхем заряда либо полностью прекратило выпуск микросхем для никелевых батарей, либо выпускает микросхемы, инвариантные к технологии батареи (так называемые Multi-Chemistry IC). В номенклатуре компании STMicroelectronics в настоящее время присутствуют только микросхемы, предназначенные для работы с литиевыми аккумуляторами.

Коротко напомним основные особенности литиевых аккумуляторов. Достоинства:

  • Высокая удельная электроемкость. Типичные значения 110…160Вт*час*кг, что в 1,5…2,0 раза превышает аналогичный параметр для никелевых батарей. Соответственно, при равных габаритах емкость литиевой батареи выше.
  • Низкий саморазряд: примерно 10% в месяц. В никелевых батареях этот параметр равен 20…30%.
  • Отсутствует «эффект памяти», благодаря чему эта батарея проста в обслуживании: нет необходимости разряжать аккумулятор до минимума перед очередной зарядкой.

Недостатки литиевых батарей:

  • Необходимость защиты по току и напряжению. В частности, необходимо исключить возможность короткого замыкания выводов аккумулятора, подачи напряжения обратной полярности, перезаряда.
  • Необходимость защиты от перегрева: нагрев батареи выше определенного значения негативно влияет на ее емкость и срок службы.

Существуют две промышленные технологии изготовления литиевых аккумуляторов: литий-ионная (Li-Ion) и литий-полимерная (Li-Pol). Однако, поскольку алгоритмы заряда этих батарей совпадают, то микросхемы заряда не разделяют литий-ионную и литий-полимерную технологии. По этой причине обсуждение достоинств и недостатков Li-Ion- и Li-Pol-аккумуляторов пропустим, сославшись на литературу .

Рассмотрим алгоритм заряда литиевых батарей, представленный на рисунке 1.

Рис. 1.

Первая фаза, так называемый предварительный заряд, используется только в тех случаях, когда батарея сильно разряжена. Если напряжение батареи ниже 2,8 В, то ее нельзя сразу заряжать максимально возможным током: это крайне отрицательно скажется на сроке службы аккумулятора. Необходимо сначала «подзарядить» батарею малым током примерно до 3,0 В, и только после этого заряд максимальным током становится допустим.

Вторая фаза: зарядное устройство как источник постоянного тока. На этом этапе через батарею протекает максимальный для заданных условий ток. При этом, напряжение аккумулятора постепенно растет до тех пор, пока не достигнет предельного значения, равного 4,2 В. Строго говоря, по завершению второго этапа заряд можно прекратить, но при этом следует иметь в виду, что аккумулятор на данный момент заряжен примерно на 70% своей емкости. Отметим, что во многих зарядных устройствах максимальный ток подается не сразу, а плавно нарастает до максимума в течение нескольких минут — используется механизм «плавного старта» (Soft Start).

Если желательно зарядить батарею до значений емкости, близких к 100%, то переходим к третьей фазе: зарядное устройство как источник постоянного напряжения. На этом этапе к батарее приложено постоянное напряжение 4,2 В, а ток, протекающий через батарею, в процессе заряда уменьшается от максимума до некоторого заранее заданного минимального значения. В тот момент, когда значение тока уменьшается до этого предела, заряд батареи считается законченным и процесс завершается.

Напомним, что одним из ключевых параметров аккумуляторной батареи является ее емкость (единица измерения — А*час). Так, типичная емкость литий-ионного аккумулятора типоразмера ААА равна 750…1300 мА*ч. Как производная от этого параметра используется характеристика «ток 1С», это величина тока, численно равная номинальной емкости (в приведенном примере — 750…1300 мА). Значение «тока 1С» имеет смысл только как определение величины максимального тока при заряде батареи и величины тока, при которой заряд считается законченным. Принято считать, что величина максимального тока не должна превышать величины 1*1С, а заряд батареи можно считать завершенным при снижении тока до величины 0,05…0,10*1С. Но это те параметры, которые можно считать оптимальными для конкретного типа батареи. В реальности одно и то же зарядное устройство может работать с аккумуляторами различных производителей и различной емкости, при этом емкость конкретной батареи остается для зарядного устройства неизвестной. Следовательно, заряд батареи любой емкости в общем случае будет происходить не в оптимальном для батареи режиме, а в режиме, предустановленном для зарядного устройства.

Перейдем к рассмотрению линейки микросхем заряда компании STMicroelectronics.

Микросхемы STBC08 и STC4054

Эти микросхемы представляют собой достаточно простые изделия для заряда литиевых аккумуляторов. Микросхемы выполнены в миниатюрных корпусах типа и , соответственно. Это позволяет использовать данные компоненты в мобильных устройствах с достаточно жесткими требованиями по массогабаритным характеристикам (например, сотовые телефоны, МР3-плейеры). Схемы включения и представлены на рисунке 2.

Рис. 2.

Несмотря на ограничения, которые накладывает минимальное количество внешних выводов в корпусах, микросхемы обладают достаточно широкими функциональными возможностями:

  • Нет необходимости в применении внешнего MOSFET-транзистора, блокировочного диода и токового резистора. Как следует из рисунка 2, внешняя обвязка ограничивается фильтрующим конденсатором на входе, программирующим резистором и двумя (для STC4054- одним) индикаторными светодиодами.
  • Максимальное значение тока заряда программируется номиналом внешнего резистора и может достигать значения 800мА. Факт окончания заряда определяется в тот момент, когда в режиме постоянного напряжения значение зарядного тока снизится до величины 0,1*I BAT , то есть, также задается номиналом внешнего резистора. Максимальный ток заряда определяется из соотношения:

I BAT = (V PROG /R PROG)*1000;

где I BAT — ток заряда в Амперах, R PROG — сопротивление резистора в Омах, V PROG — напряжение на выходе PROG, равное 1,0 Вольта.

  • В режиме постоянного напряжения на выходе формируется стабильное напряжение 4,2В с точностью не хуже 1%.
  • Заряд сильно разряженных батарей автоматически начинается с режима предварительной зарядки. До тех пор, пока напряжение на выходе аккумулятора не достигнет величины 2,9В, заряд осуществляется слабым током величиной 0,1*I BAT . Подобный метод, как уже отмечалось, предотвращает весьма вероятный выход из строя при попытке заряда сильно разряженных аккумуляторов обычным способом. Кроме того, величина стартового значения зарядного тока принудительно ограничивается, что также увеличивает срок службы батарей.
  • Реализован режим автоматической капельной подзарядки- при снижении напряжения батареи до 4,05В цикл заряда будет перезапущен. Это позволяет обеспечить постоянный заряд батареи на уровне не ниже 80% от его номинальной емкости.
  • Защита от перенапряжения и перегрева. Если значение входного напряжения превышает определенный предел (в частности, 7,2В) или если температура корпуса превысит величину 120°С, то зарядное устройство отключается, защищая себя и аккумулятор. Разумеется, реализована также защита от низкого входного напряжения- если входное напряжение опустилось ниже определенного уровня (U VLO), то зарядное устройство также отключится.
  • Возможность подключения светодиодов индикации позволяет пользователю иметь представление о текущем состоянии процесса зарядки батареи.

Микросхемы заряда батареи L6924D и L6924U

Данные микросхемы представляют собой устройства с более широкими возможностями по сравнению с STBC08 и STC4054. На рисунке 3 представлены типовые схемы включения микросхем и .

Рис. 3.

Рассмотрим те функциональные особенности микросхем , которые касаются задания параметров процесса заряда батареи:

1. В обеих модификациях есть возможность задать максимальную продолжительность заряда батареи начиная с момента перехода в режим стабилизации постоянного тока (также используется термин «режим быстрой зарядки» — Fast charge phase). При переходе в этот режим запускается сторожевой таймер, запрограммированный на определенную длительность T PRG номиналом конденсатора, подключенного к выводу T PRG . Если до срабатывания данного таймера заряд батареи не будет прекращен по штатному алгоритму (снижение тока, протекающего через батарею, ниже значения I END), то после срабатывания таймера зарядка будет прервана принудительно. При помощи этого же конденсатора задается максимальная продолжительность режима предварительной зарядки: она равна 1/8 от продолжительности T PRG . Также, если за это время не произошел переход в режим быстрой зарядки, происходит выключение схемы.

2. Режим предварительной зарядки. Если для устройства STBC08 ток в этом режиме задавался как величина, равная 10% от I BAT , а напряжение переключения в режим постоянного тока было фиксированным, то в модификации L6924U этот алгоритм сохранился без изменений, но в микросхеме L6924D оба этих параметра задаются с использованием внешних резисторов, подключаемых ко входам I PRE и V PRE .

3. Признак завершения зарядки на третьей фазе (режим стабилизации постоянного напряжения) в устройствах STBC08 и STC4054 задавался как величина, равная 10% от I BAT . В микросхемах L6924 этот параметр программируется номиналом внешнего резистора, подключаемого к выводу I END . Кроме того, для микросхемы L6924D существует возможность снизить значение напряжения на выводе V OUT с общепринятого значения 4,2 В до значения 4,1 В.

4. Значение максимального зарядного тока I PRG в данных микросхемах задается традиционным образом — посредством номинала внешнего резистора.

Как видим, в простых «зарядках» STBC08 и STC4054 при помощи внешнего резистора задавался только один параметр — зарядный ток. Все остальные параметры были либо жестко зафиксированы, либо являлись функцией от I BAT . В микросхемах L6924 есть возможность тонкой подстройки еще нескольких параметров и, кроме того, осуществляется «страховка» максимальной продолжительности процесса зарядка батареи.

Для обеих модификаций L6924 предусмотрено два режима работы, если входное напряжение формируется сетевым AC/DC-адаптером. Первый — стандартный режим линейного понижающего регулятора выходного напряжения. Второй — режим квазиимпульсного регулятора. В первом случае в нагрузку может быть отдан ток, величина которого чуть меньше, чем величина входного тока, отбираемого от адаптера. В режиме стабилизации постоянного тока (вторая фаза — Fast charge phase) разница между входным напряжением и напряжением на «плюсе» батареи рассеивается как тепловая энергия, вследствие чего рассеиваемая мощность на этой фазе заряда максимальна. При работе в режиме импульсного регулятора в нагрузку может быть отдан ток, значение которого выше, чем значение входного тока. При этом «в тепло» уходит существенно меньшая энергия. Это, во-первых, снижает температуру внутри корпуса, а во-вторых — повышает эффективность устройства. Но при этом следует иметь в виду, что точность стабилизации тока в линейном режиме равно приблизительно 1%, а в импульсном — около 7%.

Работа микросхем L6924 в линейном и квазиимпульсном режимах иллюстрируется рисунком 4.

Рис. 4.

Микросхема L6924U, кроме того, может работать не от сетевого адаптера, а от USB-порта. В этом случае микросхема L6924U реализует некоторые технические решения , которые позволяют дополнительно снизить рассеиваемую мощность за счет увеличения продолжительности зарядки.

Микросхемы L6924D и L6924U имеют дополнительный вход принудительного прерывания заряда (то есть отключения нагрузки) SHDN.

В простых микросхемах заряда температурная защита заключается в прекращении заряда при повышении температуры внутри корпуса микросхемы до 120°С. Это, конечно, лучше, чем полное отсутствие защиты, но величина 120°С на корпусе с температурой самой батареи связана более чем условно. В изделиях L6924 предусмотрена возможность подключения термистора, непосредственно связанного с температурой аккумулятора (резистор RT1 на рисунке 3). При этом появляется возможность задать температурный диапазон, в котором заряд батареи станет возможным. С одной стороны, литиевые батареи не рекомендуется заряжать при минусовой температуре, а с другой — также крайне нежелательно, если батарея при зарядке нагревается более чем до 50°С. Применение термистора дает возможность производить зарядку батареи только при благоприятных температурных условиях.

Естественно, дополнительный функционал микросхем L6924D и L6924U не только расширяет возможности проектируемого устройства, но и приводит к увеличению площади на плате, занимаемой как самим корпусом микросхемы, так и внешними элементами обвязки.

Микросхемы заряда аккумулятора STBC21 и STw4102

Это — дальнейшее усовершенствование микросхемы L6924. С одной стороны, реализован приблизительно тот же функциональный пакет:

  • Линейный и квазиимпульсный режим.
  • Термистор, связанный с батареей, как ключевой элемент температурной защиты.
  • Возможность задания количественных параметров для всех трех фаз процесса зарядки.

Некоторые дополнительные возможности, отсутствовавшие в L6924:

  • Защита от неправильной полярности.
  • Защита от короткого замыкания.
  • Существенным отличием от L6924 является наличие цифрового интерфейса I 2 C для задания значений параметров и других настроек. Как следствие, становятся возможными более точные настройки процесса заряда. Рекомендуемая схема включения приведена на рисунке 5. Очевидно, что в данном случае вопрос об экономии площади платы и о жестких массогабаритных характеристиках не стоит. Но также очевидно, что применение данной микросхемы в малогабаритных диктофонах, плейерах и мобильных телефонах простых моделей не предполагается. Скорее, это аккумуляторы для ноутбуков и подобных устройств, где замена батареи- процедура нечастая, но и недешевая.

Рис. 5.

5. Camiolo Jean, Scuderi Giuseppe. Reducing the Total No-Load Power Consumption of Battery Chargers and Adapter Applications Polymer//Материал компании STMicroelectronics. Размещение в Интернете:

7. STEVAL-ISV012V1: lithium-ion solar battery charger//Материал компании STMicroelectronics. Размещение в Интернете: .

Получение технической информации, заказ образцов, поставка — e-mail:

Зарядное устройство для li ion аккумуляторов , схема которого приведенная в данной статье, было разработано на основе опыта конструирования подобных зарядников, усилиях по ликвидации ошибок и достижения максимальной простоты. Зарядное устройство отличается высокой стабильностью выходного напряжения.

Описание зарядки для литий ионных аккумуляторов

Основным элементом конструкции является (IO1) — источник опорного напряжения. Его стабильность значительно лучше, чем допустим , а, как известно для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Элемент TL431 используется в данной схеме в качестве стабилизатора тока в работе транзисторов Т1 и Т2. Зарядный ток протекает через R1. Если падение напряжения на этом резисторе превышает примерно 0,6 вольт, происходит ограничение тока проходящего через транзисторы Т1 и Т2. Значение резистора R1 эквивалентно току зарядки.

Выходное напряжение управляется вышеупомянутым элементом TL431. Значение определяется делителем выходного напряжения (R5, R7, P1).

Компоненты R4, С1 для подавления помех. Очень удобным является индикация величины зарядного тока, при помощи светодиода LED1. Свечение показывает какой ток протекает в базовой цепи транзистора T2, который пропорционален выходному току. По мере зарядки литий-ионного аккумулятора, яркость светодиода постепенно снижается.

Диод D1 предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства. Схема зарядки аккумулятора не нуждается в защите от неправильного подключения полярности li-ion аккумулятора.

Все компоненты размещены на односторонней печатной плате.

Датчик тока — резистор R1 состоит из нескольких резисторов соединенных параллельно. Транзистор Т2 необходимо разместить на теплоотводе. Его размер зависит от тока зарядки и разности напряжений между входом и выходом зарядного устройства.

Схема зарядного устройства литий-ионного аккумулятора настолько проста, что при правильном монтаже радиодеталей должна заработать с первого раза. Единственно, что может потребоваться, так это установка выходного напряжения. Для литий-ионного аккумулятора это примерно 4,2 вольт. При холостом ходе транзистор Т2 не должен быть горячим. Входное напряжение должно быть хотя бы на 2 вольт выше, чем необходимое напряжение на выходе.

Схема предназначена для зарядного тока до 1 ампер. Если нужно повысить ток заряда li-ion аккумулятора, то необходимо уменьшить сопротивление резистора R6 и выходной транзистор Т2 должен быть повышенной мощности.

В конце процесса зарядки светодиод все же немного светится, что бы это устранить, можно просто подключить параллельно со светодиодом резистор сопротивлением 10…56 кОм. Так при снижении тока заряда ниже 10 мА светодиод перестанет светиться.

http://web.quick.cz/PetrLBC/zajic.htm