Собственно стабилизатор состоит из источника опорного напряжения (лампа HL1 и стабилитроны VD2, VD3), усилителя постоянного тока (транзисторы VT3, VT4) и регулирующего транзистора (VT5). В источнике опорного напряжения протекающий через стабилитроны ток стабилизируется лампой накаливания, что улучшает коэффициент стабилизации, а значит, снижает пульсации выпрямленного напряжения. Лампа одновременно служит индикатором перегрузки, вспыхивающим при срабатывании электронной защиты. Для увеличения выходного тока до 3...5 А применен мощный транзистор VT5.

Электронная защита выполнена на транзисторе VT1 и тринисторе VS1. При достижении максимально допустимого тока нагрузки увеличивается падение напряжения на резисторе R3, транзистор VT1 открывается, и положительный импульс напряжения через диод VD1 открывает тринистор. Он шунтирует источник опорного напряжения и закрывает транзисторы VT3—VT5. После устранения перегрузки и установки регулятора выходного напряжения (переменный резистор R4) в нижнее по схеме положение устройство возвращается в исходное состояние кратковременным нажатием кнопки SB1.

Применение дополнительной электромагнитной защиты необходимо по следующим соображениям. В определенной ситуации перегрузка *или короткое замыкание в цепи нагрузки может наступить тогда, когда стабилизатор уже работал продолжительное время при токе, близком к максимальному.

В этом случае транзистор VT5 разогрет и при срабатывании электронной защиты не закрывается полностью. Через транзистор продолжает протекать большой ток, способный перегреть транзистор и вывести его из строя.
Вот здесь и пригодится электромагнитная защита, выполненная на транзисторе VT2 и реле К1. При открывании тринистора VS1 база транзистора VT2 подключается через резистор R5 к плюсовому проводу стабилизатора. Транзистор открывается, срабатывает реле К1 и подключает контактами К1.1 базу транзистора VT5 к плюсовому проводу.


Выходное напряжение стабилизатора устанавливают переменным резистором R4 от 0,2 до 15 В, а максимальный ток нагрузки, при котором срабатывает защита,— под-строечным резистором R2. Использование для транзистора VT5 радиатора 1201-Б из наборов «Старт» позволяет при выходном напряжении 15 В пропускать через транзистор ток 1 А в длительном режиме или 2...3 А в течение 30...40 мин (в зависимости от условий конвекции воздуха у радиатора и температуры транзистора).

Для увеличения тока нагрузки до 5 А потребуется радиатор с большей площадью поверхности или принудительное охлаждение транзистора (небольшим вентилятором).

Указанный на схеме транзистор КТ315В можно заменить транзисторами КТ3157, КТ342А, КТ373АГ КТ375А; КТ361Е — транзисторами КТ361Г, КТ361К, КТ203Б, КТ104Г; П215 — П213—П217 с любым буквенным индексом, КТ814Б, КТ816Б; П210Б—П210В, ГТ701А. Вместо тринистора КУ101Б подойдут КУ101Г, КУ101Е, КУ101И, КУ201В, КУ201Г (мощность двух последних тринисто-ров намного выше требуемой для данной конструкции). Вместо диодов Д223 подойдут Д219А, Д220, КД509А, КД522Б, а вместо стабилитронов Д814А—Д808. Подстроеч-ный резистор R2— проволочный, типа ППЗ; постоянный резистор R3— тоже проволочный, изготовленный из отрезка провода ПЭВ-1 0,59 длиной 156 см, намотанного на фарфоровом каркасе диаметром 17 и высотой 40 мм (подойдет корпус резистора ПЭВ-10); переменный резистор R4 — любого типа с линейной функциональной характеристикой (А); остальные резисторы — МЛТ указанной на схеме или большей мощности. Лампа HL1—КМ 24-35 (на напряжение 24 В и ток 35 мА), реле — РЭС9, паспорт РС4.524.200 (обе группы контактов соединены параллельно).

Большая часть указанных деталей смонтирована на печатной плате (рис. С-1 2) из фольгированного стеклотекстолита. Вместе с остальными деталями и выпрямителем плату размещают в корпусе, на передней стенке которого устанавливают ручки управления и выходные зажимы для подключения нагрузки.

Налаживание устройства начинают с электронной защиты. Левый по схеме вывод резистора R5 отключают от деталей, а движок резистора R2 устанавливают в верхнее положение. Подключают к выходу стабилизатора нагрузку, потребляющую ток 3,5...4 А при напряжении 6...10 В. Если электронная защита сразу же срабатывает, перемещают движок резистора R2 вниз по схеме. Более точным подбором сопротивления резистора R3 (отматыванием или доматыванием провода) добиваются, чтобы электронная защита срабатывала примерно при среднем положении движка резистора R2.

Вы наверняка обратили внимание на одно неудобство при эксплуатации стабилизатора — после устранения КЗ или перегрузки приходится устанавливать движок регулятора выходного напряжения R4 в нулевое положение, после чего нажимать кнопку SB1 и вновь ставить выходное напряжение переменным резистором R4.

Избавиться от этого неудобства нетрудно, если применить вместо одинарной кнопки SB1 сдвоенную, но с контактами на размыкание. Одну группу контактов следует включить в разрыв цепи коллектора транзистора VT1, а другую — в разрыв верхнего по схеме вывода лампы HL1. Причем при нажатии кнопки первая группа должна срабатывать несколько позже второй. Если используется кнопочный выключатель типа КМ2-1, в нем для указанных целей изгибают пинцетом пружинящую пластину вверх примерно на 20° над выключателем первой группы контактов.

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

При перегрузке входа стабилизатора к участку эмиттер-коллектор регулирующих транзисторов будет приложено полное входное напряжение. Поэтому, для повышения надежности данной схемы, максимально допустимое напряжение применяемых транзисторов должно быть, по крайней мере, в 1.5 раза...

Введение

О стабилизаторах напряжения непрерывного действия написано, кажется, все. Тем не менее, разработка надежного и не слишком сложного (не более трех-четырех транзисторов) стабилизатора, особенно с повышенным током нагрузки, — достаточно серьезная задача, потому что на одно из первых мест выдвигается требование надежной защиты регулирующих транзисторов от перегрузки. При этом желательно, чтобы после устранения причины перегрузки нормальная работа стабилизатора восстановилась автоматически. Стремление выполнить эти требования зачастую приводит к значительному усложнению схемы стабилизатора и заметному уменьшению его КПД. В данной работе я постараюсь найти оптимальное решение.

1. Объект исследования

Объектом исследования является схема стабилизатора напряжения с выходным током до 3А, в которой используется защита от КЗ (Рис.1). Данный транзисторный стабилизатор предназначен для питания радиоэлектронных схем током до 3А.

Рис.1. Схема транзисторного стабилизатора с защитой от КЗ

Стабилизатор обеспечивает на нагрузке регулируемое напряжение от 15 до 27В при номинальном входном напряжении с выпрямителя 30В. Ток нагрузки – до 3А. Коэффициент стабилизации не менее 300, амплитуда пульсации выходного напряжения – не более 10мВ.

С помощью переменного резистора R7 напряжение на нагрузке можно менять в пределах от 15 до 27В, а с помощью переменного резистора R3 изменять ток срабатывания защиты в пределах от 0.15 до 3А.

Стабилитрон VD1 с прямым включением p-n перехода уменьшает температурный дрейф выходного напряжения устройства. Резистор R4 повышает надежность работы стабилизатора при повышенных температурах. Транзистор VT1 смонтирован на радиаторе в виде дюралюминевой пластины размером 100x100x5мм. Он должен иметь возможно меньший начальный ток (желательно применить кремниевый транзистор). Входное напряжение поступает на стабилизатор от выпрямителя по однофазной мостовой схеме, выполненного на диодах.

При перегрузке входа стабилизатора к участку эмиттер-коллектор регулирующих транзисторов будет приложено полное входное напряжение. Поэтому, для повышения надежности данной схемы, максимально допустимое напряжение применяемых транзисторов должно быть, по крайней мере, в 1.5 раза больше действующего значения напряжения вторичной обмотки используемого в выпрямителе силового трансформатора.

Несколько советов из источника по оптимизации схемы:

  1. Если стабилизатор плохо работает при малых токах нагрузки, нужно уменьшить сопротивление делителя напряжения R6, R7, R8 либо нагрузить выход стабилизатора постоянным резистором, однако это снижает его КПД. Поэтому лучше заменить транзистор VT1 на другой с меньшим значением коэффициента усиления.
  2. Иногда полезно включить между коллектором и эмиттером этого транзистора постоянный резистор сопротивлением 2.2-10кОм. При этом стабилизатор надежно возвращается в рабочий режим, а коэффициент стабилизации уменьшается незначительно.
  3. Если стабилизатор после перегрузки не возвращается в рабочий режим даже при отключенной нагрузке (это явление часто наблюдается при значении установленного тока срабатывания защиты, то есть при максимальном сопротивлении резистора R3), необходимо:
  4. либо уменьшить сопротивление резистора R3;
  5. либо кратковременно подключить между коллектором и эимттером транзистора VT1 резистор сопротивлением 300-510Ом.

2. Техническое задание

Транзисторный стабилизатор с защитой от КЗ с током нагрузки от 3А

1. Назначение и цели модернизации объекта

Назначение

Питание радиоэлектронных схем. Стабилизатор обеспечивает на нагрузке регулируемое напряжение от 15 до 27В при номинальном входном напряжении с выпрямителя 30В. Ток нагрузки – до 3А.

Цель модернизации

Улучшить электрические параметры устройства (уменьшить напряжение пульсации), заменить элементную базу схемы на современную, обеспечить защиту от помех, влаги и перегрева.

2. Характеристика модернизируемого объекта

Краткие сведения о модернизируемом объекте или ссылки на документы, содержащие такую информацию

  1. Тип нагрузки: активно-реактивная;
  2. Максимальный ток нагрузки: 3, A;
  3. Напряжение пульсации при максимальном токе нагрузки: < 10, мВ;
  4. Коэффициент стабилизации: > 300;
  5. Выходное напряжение: 15 - 27, В;
  6. Ток срабатывания защиты: 0.15 - 3, А

Сведения об условиях эксплуатации объекта автоматизации и характеристиках окружающей среды

Температура воздуха

  1. рабочая: от -50 до +50 ºС;
  2. предельная: от -50 до +65 ºС;

Относительная влажность воздуха: не более 80 % при 20 ºС;

Воздействие

дождя: до 3 мм/мин;

соляного тумана: дисперсность капель до 10 мкм, содержание воды до 3 г/м3;

Удары

  1. одиночные: до 75 g при D не более 10 мс;
  2. многократные: до 5 g при D не более 10 мс;

Вибрации: до 120 Гц при 4...6 g.

3. Требования к системе

Требования к объекту

Объект должен соответствовать характеристике, указанной в пункте 2.

Объект должен обеспечить

  1. питание аппаратуры напряжением от 15 до 27В и током до 3 А;
  2. защиту радиоэлектронной аппаратуры от короткого замыкания.

Требования к видам обеспечения

Техническое: обеспечить комплекс технических средств, необходимых для каждого этапа модернизации устройства.

Информационное: обеспечить наиболее полную информацию:

  1. о стандартах и методах проектирования, используемых в процессе модернизации объекта;
  2. о модернизируемом объекте и его компонентах.

4. Источники разработки

ГОСТ 15150-69. Исполнение для различных климатических районов

С. Б. Шмаков. Как создать источники питания своими руками

3. Транзисторные стабилизаторы напряжения с защитой от перегрузки

Прежде чем искать оптимальное решение, проанализируем нагрузочные характеристики Uых = f(Iвых) стабилизаторов напряжения, выполненных по наиболее распространенным схемам. У одни типов стабилизаторов при перегрузке выходное напряжение Uвых быстро снижается до нуля. Однако ток при этом не уменьшается и может быть достаточным, чтобы повредить нагрузку, да и мощность, рассеиваемая регулирующим транзистором, иногда превышает допустимую. В других исполнениях стабилизатор дополнен триггерной защитой. При перегрузке уменьшается не только выходное напряжение, но и ток. Однако защита недостаточно эффективна, так как срабатывает лишь после падения выходного напряжения и при некоторых условиях не устраняет тепловой перегрузки регулирующего транзистора. Чтобы возвратить подобный стабилизатор в рабочий режим, необходимо практически полностью отключить нагрузку, а это не всегда приемлемо, особенно для стабилизатора, служащего составной частью более сложного устройства.

Рис.2. Схема транзисторного стабилизатора

Защита стабилизатора, схема которого изображена на рис. 2, срабатывает уже при небольшом уменьшении выходного напряжения, вызванном перегрузкой.

Номиналы элементов схемы даны для выходного напряжения 12В в двух вариантах: без скобок, если VD1 — Д814Б, и в скобках, если он — КС139Е.

Его хорошие параметры объясняются тем, что все необходимые сигналы сформированы из стабилизированного выходного напряжения, а оба транзистора (регулирующий VT1 и управляющий VT2) работают в режиме усиления напряжения.

Рис.3. Нагрузочные характеристики

Экспериментально снятые нагрузочные характеристики этого стабилизатора приведены на рис. 3 (кривые 3 и 4).

При отклонении выходного напряжения от номинала его приращение через стабилитрон VD1 передается на эмиттер транзистора VT2 почти полностью. Если не учитывать дифференциальное сопротивление стабилитрона, ∆ Uэ ˜ ∆Uвых. Это — сигнал отрицательной ОС. Но в устройстве имеется и положительная.

Ее создает часть приращения выходного напряжения, поступающая на базу транзистора через делитель напряжения R2R3: Суммарная обратная связь в режиме стабилизации — отрицательная, сигналом ошибки служит величина, которая по абсолютной величине тем больше, чем меньше R3 по сравнению с R2. Уменьшение этого отношения благоприятно сказывается на коэффициенте стабилизации и выходном сопротивлении стабилизатора. Учитывая, что стабилитрон VD1 следует выбирать на максимально возможное, но меньшее выходного напряжение стабилизации.

Если заменить резистор R3 двумя включенными в прямом направлении и соединенными последовательно диодами, параметры стабилизатора улучшатся, так как место R3 в выражениях для ∆Uб и ∆Uбэ займет малое дифференциальное сопротивление открытых диодов. Однако подобная замена приводит к некоторым проблемам при переходе стабилизатора в защитный режим. На них остановимся ниже, а пока резистор R3 оставим на прежнем месте.

В режиме стабилизации падение напряжения на резисторе R1 остается практически неизменным. Ток, протекающий через этот резистор, — сумма тока стабилитрона VD1 и тока эмиттера транзистора VT2, практически равного току базы транзистора VT1.

С уменьшением сопротивления нагрузки последняя составляющая тока, текущего через R1, растет, а первая (ток стабилитрона) - уменьшается вплоть до нулевого значения, после чего приращение выходного напряжения больше не передается на эмиттер транзистора VT2 через стабилитрон.

В результате цепь отрицательной ОС оказывается разорванной, а продолжающая действовать положительная ОС приводит к лавинообразному закрыванию обоих транзисторов и отсечке тока нагрузки. Ток нагрузки, при превышении которого срабатывает защита, можно оценить по формуле:

где h21Э — коэффициент передачи тока транзистором VT1. К сожалению, h21Э имеет большой разброс от экземпляра к экземпляру транзистора, зависит от тока и температуры.

Поэтому резистор R1 зачастую приходится подбирать при налаживании. В стабилизаторе, рассчитанном на большой ток нагрузки, сопротивление резистора R1 невелико. В результате ток через стабилитрон VD1 при снижении тока нагрузки возрастает настолько, что приходится применять стабилитрон повышенной мощности.

Наличие в нагрузочных характеристиках (см. кривые 3 и 4 на рис. 3) сравнительно протяженных переходных участков между рабочим и защитным режимами (заметим, эти участки - самые тяжелые с точки зрения теплового режима транзистора VT1) объясняется в основном тем, что развитию процесса переключения препятствует местная отрицательная ОС через резистор R1. Чем меньше напряжение стабилизации стабилитрона VD1, тем больше при прочих равных условиях номинал резистора R1 и тем более "затянут" переход из рабочего в защитный режим стабилизатора.

Этот, как и ранее сделанный, вывод о целесообразности применения стабилитрона VD1 с возможно большим напряжением стабилизации подтверждается экспериментально. Выходное напряжение стабилизатора по схеме, показанной на рис. 2, со стабилитроном Д814Б (U CT = 9 В), по сравнению с аналогичным стабилитроном КС139Е (U CT = 3,9 В), значительно меньше зависит от нагрузки и он более "круто" переходит в защитный режим при перегрузке.

Рис.4. Схема стабилизатора с дополнительным транзистором VT 3

Уменьшить и даже полностью устранить переходный участок нагрузочной характеристики стабилизатора удается, добавив в него дополнительный транзистор VT3, как показано на рис. 4.

В рабочем режиме этот транзистор находится в насыщении и практически не оказывает влияния на работу стабилизатора, лишь незначительно ухудшая температурную стабильность выходного напряжения.

Когда в результате перегрузки ток стабилитрона VD1 стремится к нулю, транзистор VT3 переходит в активное состояние, а затем закрывается, создавая условия для быстрого включения защиты. Плавный переходный участок нагрузочной характеристики в этом случае отсутствует (см. кривую 1 на рис. 3).

Диоды VD2 и VD3 в рабочем режиме стабилизируют напряжение на базе транзистора VT2, что способствует улучшению основных параметров стабилизатора. Однако без дополнительного транзистора VT3 это негативно сказывается на защите, так как ослабляет положительную составляющую ОС. Переключение в защитный режим в этом случае очень затянуто и происходит только после снижения напряжения на нагрузке до величины, близкой к поддерживаемой диодами VD2 и VD3 на базе транзистора VT2 (см. кривую 2 на рис. 3).

Рассмотренные стабилизаторы обладают существенным для многих применений недостатком: остаются в защитном состоянии после устранения причины перегрузки, а нередко и при подаче напряжения питания с подключенной нагрузкой не переходят в рабочий режим. Известны различные способы их запуска, например, с помощью дополнительного резистора, установленного параллельно участку коллектор—эмиттер транзистора VT1, или "подпиткой" базы транзистора VT2. Проблема решается за счет компромисса между надежностью запуска под нагрузкой и величиной тока короткого замыкания, что не всегда приемлемо.

Малораспространенный, но интересный способ вывода стабилизатора из защитного режима заключается в том, что специально предусмотренный генератор импульсов периодически принудительно открывает регулирующий транзистор, переводя стабилизатор на некоторое время в рабочий режим. Если причина перегрузки устранена, по окончании очередного импульса защита не сработает вновь и стабилизатор продолжит нормальную работу. Средняя мощность, рассеиваемая на регулирующем транзисторе при перегрузке, возрастает незначительно.

Рис.5. Схема стабилизатора с выводом из защитного режима

На рис. 5 приведена схема одного из возможных вариантов стабилизатора, работающего по такому принципу.

При перегрузке стабилизатор переходит в колебательный режим за счет положительной ОС, замыкающейся через конденсатор С1. Резистор R3 ограничивает ток зарядки конденсатора, a R4 служит нагрузкой генератора при замыкании внешней нагрузки.

В отсутствие перегрузки после подачи напряжения питания стабилизатор запускается благодаря резистору R2. Так как конденсатор С1 зашунтирован соединенными последовательно открытым диодом VD2 и резисторами R3—R5, условия самовозбуждения не выполняются и устройство работает аналогично рассмотренному ранее (см. рис. 2). Во время перехода стабилизатора в защитный режим конденсатор С1 действует как форсирующий, ускоряя развитие процесса.

Рис.6. Эквивалентная схема стабилизатора в защитном режиме

Эквивалентная схема стабилизатора в защитном режиме показана на рис. 6. При сопротивлении нагрузки R H , равном нулю, плюсовой вывод конденсатора С1 соединен через резистор R4 с общим проводом (минусом источника входного напряжения).

Напряжение, до которого конденсатор зарядился еще в режиме стабилизации, приложено к базе транзистора VT2 в отрицательной полярности и поддерживает транзистор закрытым.

Конденсатор разряжается током i1, текущим через резисторы R3—R5 и открытый диод VD2. Когда напряжение на базе VT1 превысит -0,7В, диод VD2 закроется, но перезарядка конденсатора продолжится током i2, протекающим через резистор R2.

По достижении небольшого положительного напряжения на базе транзистора VT2 последний, а вместе с ним и VT1 начнут открываться. За счет положительной ОС через конденсатор С1 оба транзистора откроются полностью и некоторое время останутся в таком состоянии, пока конденсатор не зарядится током i3 почти до напряжения Uвх, после чего транзисторы закроются и цикл повторится.

При указанных на схеме рис. 6 номиналах элементов длительность генерируемых импульсов — единицы миллисекунд, период повторения — 100...200 мс. Амплитуда импульсов выходного тока в защитном режиме приблизительно равна току срабатывания защиты. Среднее значение тока короткого замыкания, измеренное стрелочным миллиамперметром, — примерно 30 мА.

С увеличением сопротивления нагрузки R H наступает момент, когда при открытых транзисторах VT1 и VT2 отрицательная ОС "перевешивает" положительную и генератор вновь превращается в стабилизатор напряжения. Величина R H , при которой происходит смена режимов, зависит в основном от сопротивления резистора R3. При слишком малых его значениях (менее 5 Ом) в нагрузочной характеристике появляется гистерезис, причем при нулевом сопротивлении R3 стабилизация напряжения восстанавливается лишь при сопротивлении нагрузки более 200 Ом. Излишнее увеличение сопротивления резистора R3 приводит к тому, что в нагрузочной характеристике проявляется переходный участок.

Амплитуда импульсов отрицательной полярности на базе транзистора VT2 достигает 10В, что может привести к электрическому пробою участка база—эмиттер этого транзистора. Однако пробой обратим, а ток его ограничен резисторами R1 и R3. Работы генератора он не нарушает. При выборе транзистора VT2 необходимо также учитывать, что напряжение, приложенное к его участку коллектор—база, достигает суммы входного и выходного напряжений стабилизатора.

В действующей аппаратуре выход стабилизатора напряжения обычно зашунтирован конденсатором (С2, показан на рис. 5 штриховой линией). Его емкость не должна превышать 200 мкФ. Ограничение связано с тем, что при перегрузке, не сопровождающейся полным замыканием выхода, этот конденсатор входит в цепь положительной ОС генератора. Практически это выражается в том, что генератор "заводится" только при значительной перегрузке, а в нагрузочной характеристике появляется гистерезис.

Сопротивление резистора R4 должно быть таким, чтобы падение напряжения на нем во время импульса было достаточным для открывания транзистора VT2 (» 1 В) и обеспечивало выполнение условий автогенерации при нулевом сопротивлении нагрузки. К сожалению, в режиме стабилизации этот резистор лишь уменьшает КПД устройства.

Для четкой работы защиты необходимо, чтобы при любом допустимом токе нагрузки минимальное (с учетом пульсаций) входное напряжение стабилизатора оставалось достаточным для его нормального функционирования. При проверке всех рассмотренных выше стабилизаторов с номинальным выходным напряжением 12В источником питания служил мостовой диодный выпрямитель на 14В с конденсатором емкостью 10000 мкФ на выходе. Напряжение пульсаций на выходе выпрямителя, измеренное милливольтметром ВЗ-38, не превышало 0,6 В.

При необходимости импульсный характер защиты можно использовать для индикации состояния стабилизатора, в том числе звуковой. В последнем случае при перегрузке будут слышны щелчки с частотой повторения импульсов.

Рис.7. Схема стабилизатора с импульсной защитой

На рис. 7 показана схема более сложного стабилизатора с импульсной защитой, в значительной мере лишенного недостатков рассмотренного ранее (см. рис. 5).

Его выходное напряжение — 12В, выходное сопротивление — 0,08 Ом, коэффициент стабилизации — 250, максимальный рабочий ток — ЗА, порог срабатывания защиты — 3,2А, средний ток нагрузки в защитном режиме — 60 мА.

Наличие усилителя на транзисторе VT2 позволяет при необходимости значительно увеличить рабочий ток, заменив транзистор VT1 более мощным составным. Алгоритм работы защиты этого стабилизатора мало отличается от ранее описанного.

Ухудшающий КПД последовательный резистор в выходной цепи стабилизатора (аналогичный R4, см. рис. 5) отсутствует, нагрузкой генератора служит резистор R1. Назначение диодов VD1, VD2 и транзистора VT4 аналогично элементам VD2, VD3 и VT3 в стабилизаторе по схеме, изображенной на рис. 4.

Номинал ограничительного резистора R4 может находиться в пределах от десятков ом до 51 кОм. Выход стабилизатора допускается зашунтировать конденсатором емкостью до 1000 мкФ, что приводит, однако, к возникновению гистерезиса в нагрузочной характеристике: при пороге срабатывания защиты 3,2А измеренное значение тока возврата в режим стабилизации — 1,9 А.

Для четкого переключения режимов необходимо, чтобы с уменьшением сопротивления нагрузки ток через стабилитрон VD3 прекратился раньше, чем войдет в насыщение транзистор VT2.

Поэтому номинал резистора R1 выбирают таким образом, чтобы перед срабатыванием защиты между коллектором и эмиттером этого транзистора оставалось напряжение не менее 2...3 В. В защитном режиме транзистор VT2 входит в насыщение, в результате амплитуда импульсов тока нагрузки может в 1,2... 1,5 раза превышать ток срабатывания защиты. Следует учитывать, что при значительном уменьшении сопротивления R1 ощутимо возрастает рассеиваемая на транзисторе VT2 мощность.

Наличие конденсатора С1 теоретически способно привести к росту пульсации выходного напряжения стабилизатора. Выходное стабилизированное напряжение равно сумме падений напряжения на диодах VD1 и VD2, участке база—эмиттер транзистора VT4 и напряжения стабилизации стабилитрона VD3 за вычетом падения напряжения на участке база—эмиттер транзистора VT3 — приблизительно на 1,4В больше напряжения стабилизации стабилитрона. Ток срабатывания защиты вычисляют по формуле

Благодаря дополнительному усилителю на транзисторе VT2 ток, протекающий через резистор R3, сравнительно невелик, даже при значительных расчетных токах нагрузки.

Это, с одной стороны, улучшает КПД стабилизатора, но с другой — заставляет применять в качестве VD3 стабилитрон, способный работать при малых токах. Минимальный ток стабилизации показанного на схеме (см. рис. 7) стабилитрона КС211Ж — 0,5 мА.

Подобный стабилизатор, кроме своего прямого назначения, может служить ограничителем разрядки аккумуляторной батареи. Для этого выходное напряжение устанавливают таким, чтобы при напряжении батареи меньше допустимого сработала защита, предотвращая дальнейшую разрядку. Номинал резистора R6 в этом случае целесообразно увеличить до 10 кОм. В результате ток, потребляемый устройством в рабочем режиме, уменьшится с 12 до 2,5 мА. Следует иметь в виду, что на грани срабатывания защиты этот ток возрастает приблизительно до 60 мА, но с запуском генератора импульсов среднее значение тока разрядки батареи падает до 4...6 мА.

По рассмотренному принципу импульсной защиты можно строить не только стабилизаторы напряжения, но и самовосстанавливающиеся электронные "предохранители", устанавливаемые между источником питания и нагрузкой. В отличие от плавких вставок, такие предохранители можно использовать многократно, не заботясь о восстановлении после устранения причины срабатывания.

Электронный предохранитель должен выдерживать как кратковременное, так и продолжительное, полное или частичное замыкание нагрузки. Последнее нередко возникает при длинных соединительных проводах, сопротивление которых — заметная часть полезной нагрузки. Этот случай наиболее тяжел для коммутационного элемента предохранителя.

Рис.8. Схема самовосстанавливающегося электронного предохранителя с импульсной защитой

На рис. 8 приведена схема простого самовосстанавливающегося электронного предохранителя с импульсной защитой. Принцип его работы близок к описанному выше стабилизатору напряжения (см. рис. 5), но до срабатывания защиты транзисторы VT1 и VT2 находятся в состоянии насыщения и выходное напряжение практически равно входному. Если ток нагрузки превысил допустимое значение, транзистор VT1 выходит из насыщения и выходное напряжение начинает уменьшаться.

Его приращение через конденсатор С1 поступает на базу транзистора VT2, закрывая последний, а вместе с ним и VT1. Выходное напряжение уменьшается еще больше, и в результате лавинообразного процесса транзисторы VT1 и VT2 оказываются закрытыми полностью. Через некоторое время, зависящее от постоянной времени цепи R1C1, они откроются вновь, однако, если перегрузка сохранилась, опять закроются. Этот цикл повторяется до устранения перегрузки.

Частота генерируемых импульсов — приблизительно 20 Гц при нагрузке, незначительно превышающей допустимую, и 200 Гц при ее полном замыкании. Скважность импульсов в последнем случае — более 100. При увеличении сопротивления нагрузки до допустимого значения транзистор VT1 войдет в насыщение и генерация импульсов прекратится. Ток срабатывания "предохранителя" можно ориентировочно определить по формуле

Коэффициент 0,25, подобранный экспериментально, учитывает, что в момент перехода транзистора VT1 из насыщения в активный режим его коэффициент передачи тока значительно меньше номинального.

Измеренный ток срабатывания защиты при входном напряжении 12В — 0,35А, амплитуда импульсов тока нагрузки при ее замыкании — 1,3 А.

Гистерезис (разность токов срабатывания защиты и восстановления рабочего режима) не обнаружен. К выходу "предохранителя" при необходимости можно подключить блокировочные конденсаторы суммарной емкостью не более 200 мкФ, что увеличит ток срабатывания приблизительно до 0,5 А.

При необходимости ограничить амплитуду импульсов тока нагрузки в эмиттерную цепь транзистора VT2 следует включить резистор в несколько десятков ом и немного увеличить номинал резистора R3.

При неполном замыкании нагрузки возможен электрический пробой участка база—эмиттер транзистора VT2. На работу генератора это влияет незначительно, да и для транзистора опасности не представляет, так как заряд, накопленный в конденсаторе С1 перед пробоем, сравнительно невелик.

Рис.9. Схема предохранителя без понижения КПД

Недостатки "предохранителя", собранного по рассмотренной схеме (рис. 8), — низкий КПД из-за включенного последовательно в цепь нагрузки резистора R3 и не зависящего от нагрузки тока базы транзистора VT1.

Последнее характерно и для других подобных устройств. Обе причины, снижающие КПД, устранены в более мощном "предохранителе" с максимальным током нагрузки 5А, схема которого показана на рис. 9.

Его КПД превышает 90 % в более чем десятикратном интервале изменения тока нагрузки. Ток, потребляемый в отсутствие нагрузки, — менее 0,5 мА.

Для уменьшения падения напряжения на "предохранителе" в качестве VT4 применен германиевый транзистор. При токе нагрузки меньше допустимого этот транзистор находится на грани насыщения. Это состояние поддерживает петля отрицательной ОС, которую при открытом и насыщенном транзисторе VT2 образуют транзисторы VT1 и VT3. Падение напряжения на участке коллектор—эмиттер транзистора VT4 не превышает 0,5В при токе нагрузки 1 А и 0,6 В — при 5 А.

При токе нагрузки, меньшем тока срабатывания защиты, транзистор VT3 находится в активном режиме и напряжение между его коллектором и эмиттером достаточно для открывания транзистора VT6, что обеспечивает насыщенное состояние транзистора VT2 и в конечном итоге — проводящее состояние ключа VT4. С увеличением тока нагрузки ток базы VT3 под действием отрицательной ОС увеличивается, а напряжение на его коллекторе уменьшается до закрывания транзистора VT6. В этот момент и срабатывает защита. Ток срабатывания можно оценить по формуле

где Рэкв — общее сопротивление соединенных параллельно резисторов R4, R6 и R8.

Коэффициент 0,5, как и в предыдущем случае, — экспериментальный. При замыкании нагрузки амплитуда импульсов выходного тока приблизительно в два раза больше тока срабатывания защиты.

Благодаря действию положительной ОС, замыкающейся через конденсатор С2, транзистор VT6, а с ним и VT2—VT4 полностью закрываются, VT5 — открывается. Транзисторы остаются в указанных состояниях до окончания зарядки конденсатора С2 током, текущим через участок база—эмиттер транзистора VT5 и резисторы R7, R9, R11, R12. Так как из перечисленных резисторов самый большой номинал у R12, он и определяет период повторения генерируемых импульсов — приблизительно 2,5с.

После окончания зарядки конденсатора С2 транзистор VT5 закроется, VT6 и VT2—VT4 откроются. Конденсатор С2 приблизительно за 0,06 с разрядится через транзистор VT6, диод VD1 и резистор R11. При замкнутой нагрузке коллекторный ток транзистора VT4 в это время достигает 8... 10А. Затем цикл повторится. Однако во время первого же после устранения перегрузки импульса транзистор VT3 не войдет в насыщение и "предохранитель" вернется в рабочий режим.

Интересно, что во время импульса транзистор VT6 не открывается полностью. Этому препятствует образованная транзисторами VT2, VT3, VT6 петля отрицательной ОС. При указанном на схеме (рис. 9) номинале резистора R9 (51 кОм) напряжение на коллекторе транзистора VT6 не опускается ниже 0,3Uвх..

Самая неблагоприятная для "предохранителя" нагрузка — мощная лампа накаливания, у которой сопротивление холодной нити в несколько раз меньше, чем разогретой. Проверка, проведенная с автомобильной лампой 12В 32 + 6 Вт, показала, что 0,06 с для разогрева вполне достаточно и "предохранитель" после ее включения надежно входит в рабочий режим. Но для более инерционных ламп длительность и период повторения импульсов возможно придется увеличить, установив конденсатор С2 большего номинала (но не оксидный).

Скважность генерируемых импульсов в результате такой замены останется прежней. Равной 40 она выбрана не случайно. В этом случае, как при максимальном токе нагрузки (5 А), так и при замыкании выхода "предохранителя", на транзисторе VT4 рассеивается приблизительно одинаковая и безопасная для него мощность.

Транзистор ГТ806А можно заменить другим из этой же серии или мощным германиевым, например, П210слюбым буквенным индексом. Если германиевые транзисторы отсутствуют или необходимо работать при повышенной температуре, можно использовать и кремниевые с h21э>40, например, КТ818 или КТ8101 с любыми буквенными индексами, увеличив номинал резистора R5 до 10 кОм. После такой замены напряжение, измеренное между коллектором и эмиттером транзистора VT4, не превышало 0,8В при токе нагрузки 5А.

При изготовлении "предохранителя" транзистор VT4 необходимо установить на теплоотвод, например, алюминиевую пластину размерами 80 x 50 x 5 мм. Теплоотвод площадью 1,5...2 см² нужен и транзистору VT3,

Первое включение устройства производите без нагрузки, и прежде всего проверяется напряжение между коллектором и эмиттером транзистора VT4, которое должно быть приблизительно 0,5 В. Затем к выходу через амперметр подключается проволочный переменный резистор сопротивлением 10...20 Ом и мощностью 100 Вт.

4. Моделирование

Рис. 10. Схема транзисторного стабилизатора

Изначально схема собиралась на идеальных элементах, после чего они заменялись реальными. Элементы схемы были заменены аналогами из базы Multisim.

Рис.11. Осциллограмма работы устройства

Красная линия – сигнал с входа схемы, синяя – с выхода.


А также другие работы, которые могут Вас заинтересовать

28138. Правило Бугера-Вебера и “основной психофизический закон” Г.Т.Фехнера 36 KB
Бугер пришел к выводу что величина едва заметного различия ЕЗР между двумя освещенностями непостоянна она возрастает пропорционально исходной освещенности: ΔL=kL. Другими словами отношение ЕЗР ΔL к исходному уровню освещенности есть величина постоянная; ΔL L= const. раз то и величина разностного порога ΔР = P1 Р2 повышалась в той же пропорции. Для веса в 200 граммов величина разностного порога составляла 6 граммов для 300 9 граммов и т.
28139. Понятие о психофизических шкалах. Основные методы психофизического шкалирования 530 KB
Основные методы психофизического шкалирования. Методы психофизического шкалирования: 1. Методы воспроизведения и идентификации. Эти методы редко используются но имеют ценность для изучения кратковременной памяти так как позволяют оценить характер трансформации субъективного образа сигнала при его запечатлении и хранении.
28140. Интроспективная психология 40 KB
Интроспекция лат. В качестве особого метода интроспекция была обоснована в работах Р. Виды интроспекции: аналитическая интроспекция; систематическая интроспекция; феноменологическое самонаблюдение. Человек в отличие от животных наделен разумной душой сознанием по отношению к которому применительна интроспекция.
28141. Европейский функционализм 44 KB
Предметом психологии функционализм обозначает сознание и функционалистов не интересует строение сознания. Их интересуют два главных вопроса::Какова роль сознания психики в жизнедеятельности организмовУ истоков европейского функционализма стоял австрийский психолог Франц Брентано 18381917. Главной для новой психологии он считал проблему сознания. Для обозначения этого признака сознания Брентано предложил термин интенция.
28142. Американский функционализм 24 KB
Не требует особых комментариев положение о том насколько существен для научной теории этот аспект анализа реальной работы производимой как внутри состава собственно психического акта так и в процессе его организующего воздействия на приспособление организма к среде и на активное преобразование последней. Стимул перестает быть независимым по отношению к организму и его реакции Объект становится производным от акта или функции. Дьюи выступал с резкой критикой детерминистической концепции рефлекторного акта в которой объект действия не...
28143. Методы психологии труда 173.5 KB
ПТ пытается решить две основных макрозадачи: 1 повышение производительности и эффективности трудовой деятельности 2 гуманизация трудовой деятельности содействие развитию личности в ней. как регуляторов трудовой деятельности и их развития в деятельности. Изучение основных психических свойств субъекта трудовой деятельности и ее эффективности. Изучение проблемы мотивации трудовой деятельности.

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы. Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – это диод с малым внутренним сопротивлением которое при изменении тока практический не меняется. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Конденсатор нужен для сглаживания пульсаций по напряжению, называется он фильтрующим. Резистор нужен для сглаживания пульсаций по току и называется он гасящим. Стабилитрон стабилизирует напряжение на нагрузке. Для нормальной работы данной схемы напряжение питания должно быть больше 40…50 %. Стабилитрон следует подобрать под нужное нам напряжение и ток.

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

Принцип работы стабилизатора на одном транзисторе

Цепочка из R1 и VT1 нам уже знакома из предыдущей схемы, это простейший стабилизатор, он задает стабилизированное напряжение на базе транзистора VT2. Транзистор в свою очередь выполняет функцию усилителя тока и является управляющим элементом в этой схеме. Например, при повышении входного напряжения, выходное напряжение будет стремится к возрастанию. Это приводит к понижению напряжения на эмиттерном переходе транзистора VT2, что приводит к его закрытию. При этом падение напряжения на участке эмиттер – коллектор возрастает на столько, что напряжение на стабилитроне уменьшается до исходного уровня. При понижении напряжения стабилизатор реагирует в обратном порядке.

Стабилизатор на транзисторах с защитой от КЗ

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

Как видим в данную схему добавлен транзистор V4, диоды V6 и V7, и параметрический стабилизатор состоящий из резистора R1, диодов V2, V3 оснащен переключателем S2.

Принцип работы защиты стабилизатора

Данная схема рассчитана на ток срабатывания от КЗ 250…300 мА, пока он не превышен, ток будет проходить через делитель напряжения состоящий из диода V7 и резистора R3. Путем подбора данного резистора можно регулировать порог срабатывания защиты. Диод V6 при этом будет закрыт и никакого влияния на работы оказывать не будет. При срабатывании защиты диод V7 закроется, а диод V6 откроется и зашунтирует подключений стабилитрон, при этом транзисторы V4 и V5 закроются. Ток на нагрузке упадет до 20…30 мА. Транзистор V5 следует устанавливать на теплоотвод.

Стабилизатор с регулируемым выходным напряжением

В ремонте или наладке электронных устройств необходимо иметь блок питания с регулируемым выходным напряжением. Принципиальная схема стабилизаторы с регулировкой по напряжению представлена ниже.

Принцип работы стабилизатора с регулировкой напряжения

Параметрический стабилизатор состоящий из R2 и V2 стабилизируют напряжение на переменном резисторе R3. Напряжение с этого резистора поступает на управляющий транзистор. Этот транзистор включен по схеме эмиттерного повторителя, нагрузкой которого является резистор R4. Напряжение с резистора R4 подается на регулирующий транзистор V4, нагрузкой которого уже выступает наше питаемое устройство. Регулировка напряжения осуществляется переменным резистором R3, если движок резистора находится в минимальном положении по схеме, то напряжения для открытия транзисторов V3 и V4 недостаточно и на выходе будет минимальное напряжение. При вращении движка, транзисторы начинают открываться, что увеличивает напряжение на нагрузке. При увеличении тока нагрузки, падение напряжения на резисторе R1 и лампа Н1 начинает загораться, при токе в 250 мА наблюдается тусклое свечение, а при токе в 500мА и выше яркое. Транзистор V4 следует устанавливать на теплоотвод. При повышенной нагрузке более 500 мА, следует как можно быстрее выключить блок питания, так как при длительной максимальной нагрузке выходят из строя диоды в выпрямительном мостике и транзистор V4.

Данные схемы при правильной сборке не нуждаются в наладке. Также их можно модернизировать на более большой ток и напряжения. Путем подбора радиоэлементов с нужными нам параметрами.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Самодельные источники питания

Перегрузка по выходу блока питания чаще всего приводит к выходу из строя регулирующих транзисторов и поэтому в источнике питания всегда желательно предусматривать режим защиты от КЗ в нагрузке .

Здесь приводится простая схема стабилизатора +24 Вольта снабженного устройством защиты. Так как к самому источнику (трансформатор, диодный мост) особых требований не предъявляется то и на схеме он не указан.

Защитное устройство, входящее в стабилизатор блока питания обладает высоким быстродействием и хорошей «релейностью», т. е. малым влиянием на характеристики блока врабочем режиме и надежным закрыванием регулирующего транзистора V2 в режиме перегрузки. Защитное устройство состоит из тринистора V3, диодов V6, V7 и резисторов R2 и R3.

В рабочем режиме тринистор V3 закрыт и напряжение на базе транзистора V1 равно напряжению стабилизации цепочки стабилитронов V4, V5. При перегрузке ток через резистор R2 и падение напряжения на нем достигают значений, достаточных для открывания тринистора V3 по цепи управляющего электрода. Открывшийся тринистор замыкает цепочку стабилитронов V4, V5, что приводит к закрыванию транзисторов V1 и V2.

Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно нажать и отпустить кнопку S1. При этом тиристор закроется» а транзисторы V1 и V2 снова откроются. Резистор R3 и диоды V6, V7 защищают управляющий переход тринистора V3 от перегрузок по току и напряжению соответственно.

Стабилизатор обеспечивает коэффициент стабилизации около 30, защита срабатывает при токе, превышающем 2 А.

Транзистор V2 можно заменить на КТ802А, КТ805Б, а V1 - П307, П309, КТ601, КТ602 с любым буквенным индексом. Тринистор V3 может быть любым из серии КУ201, кроме КУ201А и КУ201Б.