В жизни каждого человека бывают моменты, когда необходимо наличие освещения, а электричества нет. Это может быть и банальное отключение электроэнергии, и необходимость ремонта проводки в доме, а возможно, и лесной поход или что-либо подобное.

И, конечно же, все знают, что в таком случае выручит только электрический фонарик – компактное и в то же время функциональное устройство. Сейчас на рынке электротехники множество различных видов данного товара. Это и обычные фонари с лампами накаливания, и светодиодные, с аккумуляторами и батарейками. Да и фирм, производящих эти приборы, великое множество – «Дик», «Люкс», «Космос» и т. п.

А вот каков принцип его работы, задумываются не многие. А между тем, зная устройство и схему электрического фонарика, можно при необходимости его починить или вообще собрать собственными руками. Вот в этом вопросе и попробуем разобраться.

Простейшие фонари

Так как фонарики бывают разные, то имеет смысл начать с самого простого – с батарейкой и лампой накаливания, а также рассмотреть его возможные неисправности. Схема подобного прибора элементарна.

По сути, в нем нет ничего, кроме батарейки, кнопки включения и лампочки. А потому и проблем с ним особых не бывает. Вот несколько возможных мелких неприятностей, которые могут повлечь за собой отказ такого фонаря:

  • Окисление любого из контактов. Это могут быть контакты выключателя, лампочки или батареи. Нужно просто почистить эти элементы схемы, и приборчик снова заработает.
  • Сгорание лампы накаливания – тут все просто, замена светового элемента решит эту проблему.
  • Полный разряд батареек – замена элементов питания на новые (либо зарядка, если они аккумуляторные).
  • Отсутствие контакта или перелом провода. Если фонарик уже не новый, в таком случае есть смысл поменять все провода. Сделать это совершенно не сложно.

Фонарик на светодиодах

Этот вид фонарей отличается более мощным световым потоком и при этом потребляет очень мало энергии, а значит, и элементы питания в нем прослужат дольше. Все дело в конструкции световых элементов – в светодиодах отсутствует нить накаливания, они не расходуют энергию на нагрев, ввиду этого коэффициент полезного действия таких приборов выше на 80–85%. Также велика роль дополнительного оборудования в виде преобразователя с участием транзистора, резистора и высокочастотного трансформатора.

Если аккумулятор фонарика встроенный, то с ним в комплекте обязательно идет и зарядное устройство.

Схема подобного фонаря состоит из одного или нескольких светодиодов, преобразователя напряжения, выключателя и элемента питания. В более ранних моделях фонариков количество потребления энергии светодиодами должно было соответствовать вырабатываемому источником.

Сейчас эта проблема решена при помощи преобразователя напряжения (его также называют умножителем). Собственно, он-то и является главной деталью, которую содержит электрическая схема фонарика.


При желании сделать такой прибор своими руками особых сложностей не возникнет. Транзистор, резистор и диоды – не проблема. Самым непростым моментом будет намотка высокочастотного трансформатора на ферритовом кольце, который называется блокинг-генератор.

Но и с этим можно справиться, взяв подобное колечко из неисправного электронного пускорегулирующего аппарата энергосберегающей лампы. Хотя, конечно, если не хочется возиться или нет времени, то в продаже можно найти высокоэффективные преобразователи, такие как 8115. С их помощью, при применении транзистора и резистора, и стало возможным изготовление светодиодного фонарика на одной батарейке.

Сама же схема светодиодного фонаря подобна простейшему прибору, и на ней останавливаться не стоит, т. к. собрать ее способен даже ребенок.

Кстати, при применении в схеме преобразователя напряжения на старом, простейшем фонаре, работающем от квадратной батареи в 4.5 вольт, которую сейчас уже не купить, можно будет спокойно ставить элемент питания в 1.5 вольт, т. е. обычную «пальчиковую» или «мизинчиковую» батарею. Никакой потери в световом потоке наблюдаться не будет. Основная задача при этом – иметь хотя бы малейшее представление о радиотехнике, буквально на уровне знания, что такое транзистор, а также уметь держать в руках паяльник.

Доработка китайских фонариков

Иногда бывает так, что купленный (с виду вполне качественный) фонарик с аккумулятором полностью отказывает. И вовсе не обязательно покупатель виноват в неправильной эксплуатации, хотя и это тоже встречается. Чаще – это ошибка при сборке китайского фонарика в погоне за количеством в ущерб качеству.

Конечно, в таком случае придется его переделать, как-то модернизировать, ведь потрачены деньги. Сейчас необходимо понять, как это сделать и возможно ли побороться с китайским производителем и выполнить ремонт такого прибора самостоятельно.

Рассматривая наиболее часто встречающийся вариант, при котором при включении прибора в сеть индикатор зарядки светится, но фонарь не заряжается и не работает, можно заметить вот что.

Обычная ошибка производителя – индикатор заряда (светодиод) включается в цепь параллельно с аккумулятором, чего допускать никак нельзя. При этом покупатель включает фонарь, и видя, что тот не горит, снова подает питание на заряд. В результате – перегорание всех светодиодов разом.

Дело в том, что не все производители указывают, что заряжать подобные устройства с включенными светодиодами нельзя, т. к. отремонтировать их будет невозможно, останется только заменить.

Итак, задача по модернизации – подключить индикатор заряда последовательно с аккумулятором.


Как видно из схемы, эта проблема вполне решаема.

А вот если китайцы в свое изделие поставили резистор 0118, то светодиоды придется менять постоянно, т. к. ток, поступающий на них, будет очень высоким, и какие бы световые элементы ни были установлены – они не выдерживают нагрузки.

Налобный светодиодный фонарь

В последние годы подобный световой прибор получил достаточно широкое распространение. Действительно, ведь очень удобно, когда руки свободны, а луч света бьет туда, куда смотрит человек, в этом как раз главное преимущество налобного фонарика. Раньше таким могли похвастаться только шахтеры, да и то для его ношения нужна была каска, на которую фонарь, собственно, и крепился.

Сейчас же крепление подобного прибора удобно, носить его можно при любых обстоятельствах, да и на поясе не висит довольно объемный и тяжелый аккумулятор, который, к тому же, еще и обязательно нужно раз в сутки заряжать. Современный намного меньше и легче, притом имеет очень маленькое энергопотребление.

Так что же представляет собой подобный фонарь? А принцип его работы нисколько не отличается от светодиодного. Варианты исполнения такие же – аккумуляторный или со съемными элементами питания. Количество светодиодов варьируется от 3 до 24 в зависимости от характеристик батареи и преобразователя.

К тому же обычно такие фонари имеют 4 режима свечения, а не один. Это слабый, средний, сильный и сигнальный – когда светодиоды моргают через короткие промежутки времени.


Режимами налобного светодиодного фонарика управляет микроконтроллер. Причем при его наличии возможен даже режим стробоскопа. К тому же светодиодам это совсем не вредит, в отличие от ламп накаливания, т. к. их срок службы не зависит от количества циклов включения-выключения по причине отсутствия нити накаливания.

Так какой же фонарь выбрать?

Конечно, фонарики могут быть различными и по потребляемому напряжению (от 1.5 до 12 В), и с различными выключателями (сенсорный или механический), с наличием звукового оповещения о разряде батареи. Это может быть оригинал или его аналоги. Да и не всегда можно определить, что же за прибор перед глазами. Ведь пока он не выйдет из строя и не начнется его ремонт, нельзя увидеть, какая в нем стоит микросхема или транзистор. Наверное, лучше выбирать тот, который нравится, а возможные проблемы решать уже по мере поступления.

Блокинг – генератор представляет собой генератор кратковременных импульсов повторяющихся через довольно большие промежутки времени.

Одним из достоинств блокинг - генераторов являются сравнительная простота, возможность подключения нагрузки через трансформатор, высокий КПД, подключения достаточно мощной нагрузки.

Блокинг-генераторы очень часто используются в радиолюбительских схемах. Но мы будем запускать от этого генератора светодиод.

Очень часто в походе, на рыбалке или охоте нужен фонарик. Но не всегда под рукой есть аккумулятор или батарейки 3В. Данная схема может запустить светодиод на полную мощность от почти разряженной батарейки.

Немного о схеме. Детали: транзистор можно использовать любой (n-p-n или p-n-p) в моей схеме КТ315Г.

Резистор нужно подбирать, но об этом потом.

Кольцо ферритовое не очень большое.

И диод высокочастотный с низким падением напряжения.

Итак, убирался я в ящике в столе и нашел старый фонарик с лампочкой накаливания, конечно же, сгоревшей, а недавно видел схему этого генератора.

И решил я спаять схему и засунуть в фонарик.

Ну-с приступим:

Для начала соберем по этой схеме.

Берем ферритовое кольцо (я вытащил из балласта люминесцентной лампы) И мотаем 10 витков проводом 0,5-0,3мм (можно и тоньше, но не удобно будет). Намотали, делаем петельку, ну или отвод, и мотаем еще 10 витков.

Теперь берем транзистор КТ315, светодиод и наш трансформатор. Собираем по схеме (см. выше). Я поставил еще конденсатор параллельно с диодом, так ярче светилось.

Вот и собрали. Если светодиод не горит, поменяете полярность батарейки. Все равно не горит, проверьте правильность подключения светодиода и транзистора. Если все правильно и все равно не горит, значит не правильно намотан трансформатор. Если честно у меня тоже схема завелась далеко не с первого раза.

Теперь дополняем схему остальными деталями.

Поставив диод VD1 и конденсатор С1 светодиод засветится ярче.

Последний этап - подборка резистора. Вместо постоянного резистора ставим переменный на 1,5кОма. И начинаем крутить. Нужно найти то место где светодиод светит ярче, при этом надо найти место где если увеличить сопротивление хоть чуть-чуть светодиод гаснет. В моем случае это 471Ом.

Ну ладно, теперь ближе к делу))

Разбираем фонарик

Вырезаем из одностороннего тонкого стеклотекстолита кружок под размер трубки фонарика.

Теперь идем и ищем детали нужных номиналов размером несколько миллиметров. Транзистор КТ315

Теперь размечаем плату и разрезаем фольгу канцелярским ножом.

Лудим плату

Исправляем косяки, если таковы имеются.

Теперь чтобы паять плату нам нужно специальное жало, если нет - не беда. Берем проволоку 1-1,5мм толщиной. Тщательно зачищаем.

Теперь наматываем на имеющийся паяльник. Конец проволоки можно заострить и залудить.

Ну-с приступим припаивать детали.

Можно воспользоваться лупой.

Ну, вроде все припаяли, кроме конденсатора, светодиода и трансформатора.

Теперь тест-запуск. Все эти детали (не припаивая) прицепляем на «сопли»

Ура!! Получилось. Теперь можно не опасаясь все детали припаивать нормально

Мне вдруг стало интересно, какое же напряжение на выходе, я измерил

Предостережение: белые светодиоды сравнительно дороги, поэтому я предлагаю включить небольшой резистор (от 1 до 10 Ом) последовательно с катодом светодиода для ограничения и измерения пикового тока. Во время тестирования схемы можно измерять падение напряжения на этом резисторе с помощью либо осциллографа, либо пикового детектора, чтобы убедиться, не превышает ли пиковый ток значения, рекомендованного производителем светодиодов. Отталкиваясь от этих рекомендаций, для большей надежности, постараемся получить пиковый ток не выше половины от максимального.

Обзор

Компактный импульсный преобразователь, который может обеспечить достаточное напряжение для питания белых светодиодов, состоит из минимального числа деталей. Светильник, который мы получим, по количеству люмен.часов на фунт веса батареи питания гораздо эффективнее, чем лампа накаливания. К тому же цвет свечения определяется излучением люминофора светодиода, поэтому цвет свечения практически не меняется, даже когда батарея полностью разрядится. В результате батарея служит долго. Эта дешева и подходит для применения в фонариках, аварийном освещении и других устройствах, в которых необходимо запитать белые светодиоды от одного или двух первичных элементов питания.

Схема

Не может быть проще схемы, чем эта. Блокинг-генератор состоит из транзистора, резистора 1 кОм и катушки индуктивности. При нажатии кнопки питания транзистор открывается током, текущим через резистор 1 кОм. Напряжение, которое появляется на участке индуктивности от средней точки до коллектора транзистора наводит напряжение на резисторе 1 кОм, которое может быть даже выше, чем напряжение аккумулятора, тем самым, обеспечивая положительную обратную связь. При наличии напряжения между отводом катушки и коллектором транзистора, ток коллектора постоянно растет. Из-за положительной обратной связи транзистор остается в насыщении пока что-то не произойдет с током его базы.

В какой-то момент падение напряжения на участке индуктивности от ее средней точки до коллектора транзистора приближается к значению напряжения батареи (на самом деле напряжение батареи минус напряжение насыщения коллектор-эммитер транзистора). С этого момента напряжение больше не наводится в катушке от отвода до резистора 1 кОм, и напряжение на базе начинает понижаться и становится отрицательным, ускоряя, таким образом, выключение транзистора. Хотя теперь транзистор выключен, катушка индуктивности остается источником тока, и напряжение на коллекторе повышается.

Напряжение на коллекторе быстро становится достаточно высоким для возникновения тока в светодиоде, и он течет до тех пор, пока индуктивность не разрядится. Затем напряжение на коллекторе начинает «звонить», раскачиваясь от уровня «земли» до питания, открывая транзистор и начиная другой цикл.

Индуктивность

Если вы проектируете эту схему не для коммерческого применения, у вас есть большой выбор вариантов конструкции индуктивности. Размер сердечника, его проницаемость и характеристика насыщения (физические размеры, µ и Bs) определяют, сколько ампер-витков он сможет обеспечить до насыщения. Если сердечник насыщается быстрее, чем падение напряжения на участке индуктивности от отвода до коллектора транзистора достигнет напряжения батареи, схема в любом случае сразу же переключится, потому что насыщение сердечника делает катушку подобной резистору и индуктивная связь между коллекторной и базовой (сторона с резистором 1 кОм) половинами катушки очень сильно падает. Это приводит к такому же эффекту, как и приближение падения напряжения на катушке к напряжению батареи. Сечение провода определяет, сколько ампер выдает схема перед тем, как переключиться из-за роста падения напряжения. Параметры сердечника катушки индуктивности (в основном физические размеры и магнитная проницаемость) определяют, сколько микросекунд катушка заряжается током коллектора, который возрастет до момента отключения транзистора. Эти параметры также определяют, как долго ток будет течь через светодиод, пока транзистор выключен. Практически все характеристики катушки индуктивности влияют на работу этой схемы.

Я сделал эту схему на ферритовых кольцах нескольких миллиметров в диаметре и на тороидальных сердечниках с сечением до нескольких сантиметров (обратите внимание на индуктивность на ржавом гвозде, описаную ниже).

Вот, в общем, взаимосвязь между размерами сердечника и характеристиками дросселя:

  • Большой сердечник: легко намотать, низкая частота переключения, повышенная мощность.
  • Маленький сердечник: сложно намотать, более высокая частота переключения, меньшая мощность.

Как начать. Возьмите сердечник катушки, предпочтительно из феррита, и намотайте на нем 20 витков. Сделайте отвод в виде короткой петли провода, затем продолжите намотку еще 20 витков. Увеличение количества витков ведет к снижению рабочей частоты, уменьшение - к увеличению частоты. Я наматывал всего 10 витков с отводом от середины (5+5) и работала эта катушка на частоте 200 кГц. Посмотрите описываемую ниже схему, собранную в цоколе лампочки, работающую на частоте порядка 200 кГц.

Улучшенная схема

Эта схема привлекательна тем, что содержит минимальное число элементов. Светодиод питается импульсным током. Импульс начинается с момента, когда напряжение на светодиоде достигает его прямого рабочего напряжения, которое выше напряжения батареи, что не влияет на переключение транзистора. Недостатком является то, что отношение пикового тока к среднему току светодиода является довольно высоким, оно может быть 3:1 или 5:1, в зависимости от параметров схемы (в основном от индуктивности катушки и напряжения аккумулятора). Если вы хотите, чтобы при заданном пиковом токе светодиод светил ярче, можете добавить диод и конденсатор, показанные на схеме ниже.

Один критик предложил хорошую идею: при наличии свободного места добавить развязывающий конденсатор между отрицательным выводом батареи и средней точкой дросселя. Некоторые аккумуляторы имеют высокое выходное сопротивление, и этот конденсатор может увеличить выходной ток схемы. Конденсатора емкостью 10 мкФ должно быть достаточно, но, если вы используете дроссель очень большой индуктивности, емкость лучше увеличить.

Где вы разместите источник питания?

Так как эта схема содержит мало элементов, я смог все их, в том числе индуктивность, резистор 1 кОм, транзистор 2N4401 (между прочим, в корпусе ТО-92), выпрямительный диод, чип конденсатор и светодиод NSPW315BS фирмы Nichia вместе с маленькой каплей клея поместить в основании лампы-ручки.

Применение светодиода взамен лампочки позволяет разработать компактный фонарик. Он дает достаточно света, чтобы ходить по улице в безлунную ночь. Я оценил время работы фонарика, потребляющего ток около 35 мА от батареи 1.5 В. Получилось, что он будет непрерывно работать как минимум 30 часов. Это довольно долго. Параметры нескольких щелочных батареек Duracell можно найти .

Цвет свечения остается неизменно голубовато-белым, даже при снижении напряжения батареи, Если с таким устройством хорошо обращаться, оно будет служить очень долго. У меня был один такой фонарик, собранный по последней приведенной схеме, на протяжении 18 месяцев, и я пользовался им каждую ночь. Я лишь два раза заменил батарейку. Если бы контакты на батарейке не ухудшились из-за коррозии, я бы и не знал, что пришло время заменить ее, ведь фонарик прекрасно работал.

Ночной свет ржавого гвоздя

Эти схема блокинг-генераторов лучше работают с ферритовыми сердечниками, но иногда их трудно найти. Некоторые читатели выразили беспокойство по поводу изготовления индуктивности, и это понятно, поскольку для многих катушки индуктивности имеют ореол таинственности.

Я берусь доказать, что ничего сложного в катушках индуктивности нет, и что они очень важны. Однажды, из-за поломки авто ожидая эвакуатор, я заметил ржавый гвоздь около дороги. Он был 6.5 см длинной, и я решил использовать его для сердечника катушки индуктивности.

Я вытащил витую пару из одножильного медного провода ø0.5 мм из длинного кабеля CAT-5 (Ethernet). Этот провод похож на тот, который используется для прокладки телефонных линий внутри зданий. Я намотал 60 витков витой пары примерно в три слоя на гвозде, затем подсоединил начало одного проводника к концу другого проводника, и получилась катушка индуктивности на 120 витков с отводом от середины.

Я подключил к ней транзистор 2N2222 , резистор номиналом 1 кОм, 1.5 В пальчиковую батарейку и белый светодиод. Ничего не произошло. Тогда я приложил конденсатор 0.0027 мкФ к резистору 1 кОм (он оказался на рабочем столе) и светодиод ожил. Может, вам потребуется конденсатор примерно 0.001 мкФ. Светодиод прекрасно светится, и схема потребляет 20 мА тока от элемента питания AA. Сигнал на экране осциллографа выглядит ужасно, но главное в том, что схема возбудилась даже на этом ржавом гвозде, и увеличила начальные 1.5 В элемента АА до более чем 3 В, достаточных для свечения светодиода.

Те, кто знаком с некоторыми аспектами выбора сердечника катушки сразу же заметят, что вихревые токи будут огромными, так как железо имеет низкое сопротивление по сравнению с ферритом, или, например, воздухом, и что будут, вероятно, и другие потери. И дело не в том, что вы должны бежать и покупать гвозди, чтобы сделать светодиодную лампу, а в том, что эта схема оказалась весьма работоспособной. Если ржавого гвоздя и немного телефонного провода достаточно, чтобы засветить белый светодиод, то дроссель - не проблема. Итак, отдохните, пойдите и купите ферритовый сердечник и начните работать над проектом.

Где взять ферритовые сердечники

Вольфганг Дрихаус из Германии написал, что ферритовые сердечники используются в компактных люминесцентных лампах, и что он успешно применяет их в схеме питания светодиодов. На следующий день я посмотрел вверх и увидел, что некоторые лампы нужно заменить.

Некоторые компактные люминесцентные лампы в моем доме перегорели. После покупки новых ламп, и замены перегоревших, я отправился в гараж, чтобы разобрать одну из ламп. Первой проблемой было добраться до электроники в цоколе лампы. В последующем письме, Вольфганг поведал мне, что колбу лампы можно вскрыть и достать плату без повреждения стекла. Будьте осторожны, не разбейте стеклянных трубок лампы, так как они содержат токсичную ртуть.

Я хотел удостовериться в том, что эти сердечники будут полезны для меня, и удалил обмотки с «гантели» и тороидальной катушки. В процессе разборки катушки на сердечнике типа ЕЕ феррит треснул в нескольких местах, поэтому я не смог опробовать его в моей схеме.

На сердечник «гантель» я намотал 50 витков эмалированного провода ø0.2 мм, сделал центральный отвод, и затем намотал еще 50 витков. Собрал устройство из этой катушки, транзистора 2N4401, резистора 330 Ом, подключенного к базе транзистора, и белого светодиода в соответствии со схемой, приведенной в начале статьи. Когда я подключил источник питания 1.5 В, светодиод ярко вспыхнул. Это подтвердило, что катушку с таким сердечником в данной схеме можно применять.

На тороидальный сердечник я намотал 10 витков провода ø0.4 мм, выполнил отвод и намотал еще 10 витков. Подключив катушку в ту же схему (2N4401, 330 Ом, белый светодиод) с 1.5-вольтовым питанием, я увидел, что светодиод горит, хотя и не так ярко, как с предыдущей катушкой, но ведь и витков на тороиде было намотано только 20.

Так что теперь мы знаем, где брать ферритовые сердечники. Компактные люминесцентные лампы весьма доступны, и они со временем выходят из строя и требуют замены.

Другой читатель отметил, что еще один источник ферритовых сердечников - это кабели компьютерных периферийных устройств. На кабелях монитора, клавиатуры, на некоторых USB кабелях есть пластиковые утолщения, в которых, на самом деле, содержатся ферритовые сердечники. Если вы собираетесь выбросить старую клавиатуру в мусорный бак, почему бы сначала не отрезать феррит?

Окончание читайте

Принцип работы
Нижеприведенная схема ("") позволяет питать светодиод белого или синего свечения, требующий напряжения питания 3 - 3,5 В, от одного гальванического элемента или аккумулятора NiCD ,NiMH , даже разряженных до напряжения 0,8 В под нагрузкой.

Для красных и желтых светодиодов напряжение питания при токе 20 мА составляет 1,8 - 2,4 В, а для синих, белых и зеленых - 3 - 3,5 В, поэтому запитать синий или белый светодиод от пальчиковой батарейки напрямую невозможно .
Схема представляет вариант блокинг-генератора и была описана из города Swindon в Великобритании в журнале "Everyday Practical Electronics " за ноябрь 1999 года. Ниже можно ознакомится с этой статьей:
(щелкните по рисунку мышкой для просмотра в крупном масштабе )


Питание схемы осуществляется от элемента LR6/AA/AAA напряжением 1,5 В - схема может непрерывно работать неделю от одной батарейки до ее разряда до 0,8 В!!! Примечание: AA или AAA (R6) - солевые батарейки, LR6 - щелочные (alkaline) батарейки.

Приведенная схема работает как управляемый током генератор. Всякий раз при выключении транзистора VT спадающее магнитное поле в обмотке трансформатора T вызывает возникновение положительного импульса напряжения (до 30 В) на коллекторе транзистора. Это напряжение вместе с напряжением источника питания (батарейки) прикладывается к светодиоду. Переключение происходит с очень высокой частотой и низким коэффициентом заполнения. Уменьшение сопротивления резистора R приводит к увеличению тока через светодиод и, соответственно, увеличивает яркость его свечения.
приводит вначале значение сопротивления 10 кОм (средний ток через светодиод 18 мА) и затем указывает, что уменьшение сопротивления до 2 кОм приводит к увеличению среднего тока до 30 мА. Также указывает, что коэффициент полезного действия зависит от использованного транзистора VT - к лучшим результатам приводит применение транзистора с низким напряжением насыщения между коллектором и эмиттером V CE (SAT) . Он указывает, что для транзистора ZTX450 (V CE (SAT) = 0,25 В) КПД равен 73 %, при использовании ZTX650 (V CE (SAT) < 0,12 В) возрастает до 79 %, а при применении BC550 падает до 57 %.

Упоминание подобной конструкции в статье М. Шустова "Низковольтное питание светодиодов" в журнале "Радиомир" №8 за 2003 год:

А вот конструкция японского радиолюбителя: http://elm-chan.org/works/led1/report_e.html

Моделирование
Для моделирования такого устройства можно использовать свободно распространяемый симулятор электрических цепей . Вот модель этого генератора:

При напряжении питания 1,5 В и индуктивности каждой из обмоток трансформатора 200 мкГн потребление мощности от батареи составляет 197 мВт, а на светодиоде выделяется 139 мВт. Потери мощности составили 58 мВт, из них в транзисторе 55 мВт, а в резисторе 3 мВт. Таким образом, КПД оказался равен 71%.

При напряжении питания 1,5 В и транзисторе BC547C (V CE (SAT) = 0,2 В) зависимость среднего тока светодиода от индуктивности обмотки трансформатора (с идентичными обмотками) представлена ниже:


При индуктивности обмотки меньше 17 мкГн преобразователь не запускается.

Зависимость среднего тока светодиода от напряжения питания приведена ниже:

Трансформатор
Также вместо самостоятельно намотанного трансформатора на ферритовом колечке можно использовать промышленный импульсный трансформатор, например,
М - малогабаритный, И - импульсный, Т - трансформатор, В - высота с выводами 55 мм.

МИТ-4В выпускается в корпусе коричневого или черного цвета.

Этот трансформатор имеет три обмотки (одну первичную и две вторичные) с единичным коэффициентом трансформации. Омическое сопротивление каждой обмотки составляет около 5 Ом, индуктивность около 16 мГн.
Обмотки содержат по 100 витков, намотанных проводом ПЭЛШО 0,1 на колечке К17,5х8х5 из феррита марки М2000НМ1-Б.
Обозначение ферритового колечка расшифровывается так: К - кольцо; 17,5 - внешний диаметр кольца, мм; 8 - внутренний диаметр кольца, мм; 5 - высота кольца, мм.
Марка феррита М2000НМ-1Б расшировывается так: 2000 - начальная магнитная проницаемость феррита; Н - низкочастотный феррит; М - марганец-цинковый феррит (до 100 кГц).
Первый вывод отмечен цифрой "1" на корпусе трансформатора, а нарисованная стрелка указывает направление отсчета оставшихся выводов. Я использовал обмотки с выводами 1-4 и 2-3.

Также можно использовать трансформатор согласующий низкой частоты ТОТ:

Этот трансформатор рассчитаны на работу на частоте до 10 кГц.
Обозначение "ТОТ" расшифровывается как: Т - трансформатор; О - оконечный; Т - транзисторный.
Броневой сердечник трансформатора ТОТ изготавливается из холоднокатаной ленты с высокой магнитной проницаемостью и повышенной индукцией технического насыщения марки 50H.
Расположение выводов трансформаторов ТОТ напоминает цоколевку электровакуумных ламп - имеется ключ и дополнительная маркировка первого вывода на боковой поверхности трансформатора (красная точка). При этом отсчет выводов производится по часовой стрелке со стороны монтажа, а первый вывод расположен в левом верхнем углу.

Цоколевка трансформаторов типов: а - ТОТ1 - ТОТ35; б - ТОТ36 - ТОТ189, ТОЛ1 -ТОЛ54; в - ТОТ202 - ТОТ219, ТОЛ55 - ТОЛ72

Германиевые транзисторы
Для снижения порогового напряжения батарейки, при котором светодиод еще светится, можно использовать германиевые транзисторы, например, советский n-p-n транзистор МП38А:

У этого транзистора прямое падение напряжения на p-n переходах составляет около 200 мВ .
Для проверки я собрал макетную конструкцию на транзисторе МП38А и трансформаторе МИТ-4В:

Довольно сильно разряженная литиевая батарейка CR2032 в этой схеме питает цепочку из пяти светодиодов. При этом напряжение батареи под нагрузкой составляет около 1,5 вольт.

Варианты улучшения схемы
1) Можно добавить конденсатор, включенный параллельно резистору.

Я оценил влияние конденсатора на КПД преобразователя, выполнив моделирование в :


Как видно из графика, после некоторого подъема КПД при дальнейшем увеличении емкости конденсатора КПД преобразователя начинает снижаться.
2) Также можно добавить последовательно со светодиодом диод Шоттки и включить параллельно светодиоду конденсаторы.

3) Для ограничения верхнего предела напряжения на нагрузке можно дополнительно включить стабилитрон (диод Зенера) параллельно светодиоду.

p-n-p транзисторы
Наряду с на n-p-n транзисторах, можно применять и транзисторы p-n-p структуры. Я собрал такой преобразователь на базе германиевого pnp -транзистора ГТ308В (VT ) и импульсного трансформатора МИТ-4В (катушка L1 - выводы 2-3, L2 - выводы 5-6) :

Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) - целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.

мой преобразователь на p-n-p транзисторе

Я исследовал работу этого преобразователя с помощью цифрового осциллографа. При этом преобразователь питался от полуразряженного никель-кадмиевого аккумулятора, а в качесте нагрузки использовались два зеленых светодиода, подключенных через германиевый диод.


напряжение на нагрузке

Пиковое напряжение на нагрузке превышает 5 вольт, чего вполне хватает для свечения двух зеленых светодиодов даже с учетом падения напряжения на германиевом диоде.
Такая же форма кривой напряжения на нагрузке получается и при моделировании преобразователя в симуляторе :


напряжение на резисторе


напряжение между выводами 6-5 МИТ

Напряжение на нагрузке складывается из напряжения на обмотке 6-5 трансформатора и напряжения аккумулятора.


напряжение между выводами 3-2 МИТ

Как можно заметить, напряжения на обмотках трансформатора практически идентичны (с учетом расположения одноименных зажимов).


определение периода

Период следования импульсов составил 1,344 мс, т.е. частота генерации составила 744 Гц.

Для питания такого преобразователя можно использовать не только батарейку, но и ионистор (суперконденсатор):

Для тех из вас, кто не знает, о чем идёт речь, блокинг генератор — это крошечная схема с самозапиткой, которая позволит вам зажигать светодиоды от старых батареек, напряжение которых упало вплоть до 0.5 Вольт.

Вы думаете, что батарейка уже отжила свое? Подключите её к блокинг генератору и выжмите из неё всё до последней капли энергии своими руками!

Шаг 1: Компоненты и инструмент

Для проекта понадобится всего несколько вещей, которые видны на фотографии, но для тех из вас, кто любит читать, я приложу вариант списка в текстовом виде:

  • Паяльник
  • Припой
  • Светодиод
  • Транзистор 2N3904 или его эквивалент
  • Резистор 1К
  • Тороидная бусина
  • Тонкий провод, двух цветов

Если вы найдёте транзистор 2N4401 или BC337, то светодиод будет гореть ярче, так как они рассчитаны под большую силу тока.

Шаг 2: Обмотайте тороид проводом




Сначала нужно обмотать проводом тороид. Свой я нашел в старом блоке питания. Тороиды похожи по форме на пончик и притягиваются магнитом.

Возьмите два провода, скрутите вместе их концы (вам необязательно делать так, но это немного упростит обмотку тороида).

Пропустите скрученные концы через тороид, затем возьмите два других (нескрученных конца) и обмотайте вокруг тороида. Не перекручивайте провода, убедитесь, что по всей обмотке нет места, где два повода с одинаковым цветом находятся рядом. В идеале нужно сделать 8-11 витков, находящихся на одинаковом расстоянии друг от друга и плотно прилегающих к тороиду. Как только вы завершите обмотку, отрежьте излишнюю длину провода, оставив около 5 см для соединения с другими компонентами схемы.

Снимите с концов проводов немного изоляции, затем возьмите по одному проводу с каждой стороны, убедившись что они разных цветов. Скрутите их и ваш тороид готов.

Шаг 3: Припаиваем компоненты







Пришло время спаять всё в одно устройство. Вы можете поместить всё на макетную плату, но в инструкции я решил собрать всё на коленке. Можете следовать текстовой инструкции или спаять всё по картинкам — там всё отлично отображено.

Сначала возьмите два внешних контакта транзистора и слегка отогните их наружу, а средний загните внутрь. Контакты светодиода также согните наружу. Это необязательный шаг, но он поможет проще спаять компоненты.

Возьмите один из проводов тороида, которые остались несоединёнными (всё правильно, один из нескрученных вместе проводов). Припаяйте его к одной из сторон резистора. Припаяйте другой конец резистора к среднему контакту транзистора.

Возьмите второй одиночный провод тороида и припаяйте его к коллектору транзистора. Припаяйте положительный контакт светодиода также к коллектору, а отрицательный контакт к эмиттеру.

Всё, что осталось сделать — это припаять удлинительный провод к отрицательному контакту светодиода. Возьмите кусок провода, который у вас был до этого, и припаяйте его к эмиттеру транзистора.

Шаг 4: Пробуем девайс в действии


Всё готово! Вы завершили ваш блокинг генератор на одном транзисторе. Приложите скрученные провода тороида к положительному контакту батарейки, а удлинительный провод к отрицательному контакту. Если всё собрано правильно, то светодиод загорится. Если светодиод не загорится, то попробуйте обмотать тороид более тонким проводом.